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MPCODE: AVERSATILE LINEAR AND QUADRATIC MATHEMATICAL
PROGRAMMING SYSTEM

ABSTRACT

An extensive Mathematical Programming System has been written
by A Land and S Powell under SRC funding on CDC 6600 and
ICL 1900 computers. TRRL have collaborated with L.S.E. and S.R.C.
Atlas Computer Laboratory to develop and test a version of this system
in parallel for ICL System 4 and IBM 360 Computers. A high degree of
problem solving robustness and reliability has been achieved. Tolerance
levels were determined that allow a substantial reduction in core storage
required. Examples of linear, parametric, integer, discrete and constrained
quadratic formulations are given and the document forms a Users Manual
for this system, for both System 4 and IBM 360/370 computers.

1. INTRODUCTION

Scientific utility software for the ICL 4/70 systemisnot plentiful,due to the limited number of such installations.
ICL systems for operational research work are limited to a Transportation Code’ and the LP 400 Mathematical
Programming system2. The specialised features of the Transportation Code make it unsuitable for a current TRRL
research program on dynamic models of modd choice, but LP 400 has a number of attractive features.

Substantial effort has been required to make effective use of LP 400; and we have had significant help from
the ICL subsidiary – Dataskil – in bringing LP 400 into use. From the time that the LP 400 had been handed over
to [CL by the contractors who wrote it (Scicon), relatively few ~ installations have made full use of the system.
The report writing, input and problem formulation facilities are restricted, due partly to the restrictive environment
provided by the host ICL system softwear, but the actual algorithms are efficient and LP 400 provides considerable
problem solving power. We have carried out a systematic survey of tests on LP 400 under both J and Multijob
operating systems, and have made extensive use of the MPCODEsystem to detect and diagnose erroneous solutions
produced by LP 400. The linear programming part of LP 400 is now in regular production use for Research Programme
Portfolio analysis within TRRL, and the system is demonstrably useful for linear, mixed integer, parametric and
separable problem formulations. Unfortunately, the structure of LP 400 and its supporting documentation is such
that a substantial knowledge of the mathematical field of convex programming is needed to exploit LP 400
properly. The level of generality at which LP 400 can be used requires a multiple stage process to set up first a
suitably tailored subset of LP 400 for the class of formulation described, and then to apply this to the whole range
of specific problem formulations of this type. This is a very considerable task for occasional users without a sub-
stantial background knowledge of operational research and systems analysis. It should be pointed out that this
approach is common to almost every mathematical programming system, and does allow specific problem form-
ulations to be switched from one such system to another with a minimum of effort.

For research or teaching purposes a less ponderous tool is very desirable, and an appropriate approach is to
setup a FORTRAN, ALGOL or PL/ 1 program in a reasonably machine-independent manner and include a quadratic
programming algorithm and other such powerful andyticd methods that would not normally form a part of a large
scale LP-oriented systems such as LP 400. One such system had been written and published3 by A. H. Land and
S. Powell with SRC support. The published version is in a form directly suitable for the CDC 6600 computer.
We therefore transferred it to the TRRL ICL 4/70, and put it through the necessary series of benchmark
tests to establish reliable problem solving performance. The CDC 6600 has a 60 bit word, and effectively
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unlimited storage from the programmer’s viewpoint. The ICL System 4 and IBM/360-370 computers both use
32 bit words addressed as 8 bit bytes, and in general (up to the release of the VS series of IBM operating systems)
offer less core storage to the programmer. Parallel development and testing was carried out on the IBM 370 at
SRC Chilton and on the ICL 4/70 at TRRL Crowthorne to produce a reliable system and establish tolerance
values suitable for the IBM/ICL byte/word structures when the usage of double precision storage was cut to a
minimum. The end result of this work was to produce a FORTRAN code which ran equally accurately on 4/70
and 370. The basic system has also been run on ICL 1900 and Univac 1108 machines.

The code written for the CDC 6600 and published in Land and Powel~s book3 differs from this 4/70, 370
version only in tolerance values and the use of sin~e precision and double precision declarations for appropriate
variables. For the sin~e precision version of the code we are now satisfied after extensive testing
and parallel running that the tolerance values quoted here ensure robust and accurate problem solving. The
system has already been used in current TRRL research on dynamic models of modal choice and public transport
competition, and in the analysis of turnover capacities of car parks and further applications now in hand.

2. SYSTEM SPECIFICATION

MPCODEis a suite of programs which will perform linear, parametric, integer, discrete and quadratic operations
on mathematical programming formulations. In writing this guide it has been assumed that the user has some
minimal familiarity with mathematical programming ideas, though not necessarily any deep knowledge. No
attempt will be made here to deal with theory in depth; the user is recommended to consult one of the many
excellent textbooks on the subject – for example, Reference 5. Mathematical formulations for these problems
take the general form: -

maximise z (x)—

subject to Ay<~

X>o— —

In the linear programming problem z (~) s L’(y), with dual problem

minimise y’ b“
— —

subject to y’A>c ’,y>O
___ _—

In the integer (linear) programming problem, some or dl of the variables, x , are dso limited to take
integer values.

—

In the quadratic programming problem, z (x) = p’x t %x’ Dx— —— — —

Here A is an (m x n) matrix of coefficients of constraints, & is a (m x 1) vector of the right-hand-sides of the
constraints and g or p are (n x 1) vectors of coefficients of the objective or function row. y is a (m x 1) vector
and & is a (n x 1) vector. D is a (symmetric) matrix of coefficients of the quadratic form of the quadratic
programming objective row. “ ‘ “ indicates transposition.

MPCODEwill solve problems of this class up to a limiting size. The maximum size maybe altered to take
advantage of the local core resources (see Appendix 2). The system is central-processor (CPU) dominated with
input and output being limited to card reader and line printer, except when the BB restart facdity is being used.
This does restrict the size of problem which maybe attacked, but it also makes the program remarkably versatile
and efficient in CPU time, and it may be favorably compared with commercial systems. MPCODE originally
consisted of a number of distinct programs, each of which performed one of the operations mentioned above.
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However, as these programs were essentially modular in form, having a large number of common subroutines, it
was practical to combine these programs into one system to allow the operational method (linear programming,
integer programming, etc.) to be chosen by a driver routine at run-time. This has been carried out at TRRL. This
system naturally remains modular and appropriate use of overlays reduces the core storage required for the program –
see Aooendix2. This modular construction is a source of much of the uro~ram’s versatflitv.

The original program has been tested principally on the London University CDC 6600. The system employed
.at TRRL is the same except that the values ofcertain constants have been altered (after considerable testing) to

take account of the difference in word lengths between the CDC 6600 and the ICL System 4 and IBMmachines..
(60 bit words on the CDC 6600,32 bit on System 4/IBM 360.) It is, therefore, now possible to keep to single
precision variables thus enabling larger problems to be run. The constants that required adjustment were the
tolerances. As hnd and Powell state3 “one of the critical decisions in designing LP systems is the tolerance to
be used – ‘when is a zero not a zero?’” Tolerances have been found for the 32 bit word machines which are robust
under dl known circumstances, and every attempt has been made to establish this for all the different rdgorithms
avadable in MPCODE.

The program is based on the ‘reduced inverse matrix’3 version of the Simplex Method. The controlling routine
for this method is a subroutine, DOANLP (see Fig. 2), which issues calls to a number of other subroutines which
perform the rdgorithmic functions. The linear programming option (LINP) calls DOANLP, seeks – and if possible
obtains – a feasible and subsequently an ‘optimal solution’, checks for accuracy then if necessary reinverts the
reduced matrix and enters DOANLP again to reoptimise. The integer programming option (MIF) requires all
coefficients and solution values to be integer: a version of Comory’s Method of Integer Forms is used, and the
program also uses DOANLP3amongst other routines. For the discrete programming option (BB), where a subset
(possibly total) of the variables are restricted to alter by specified step sizes, a Branch and Bound algorithm3’5
is used once again with DOANLP as the basis. Parametric Linear Programming @LP) carries out parametric
analysis on the right-hand side (~ vector) and objective function (g vector) elements, as an extension to the
basic LP. The Quadratic Programming option (QP) employs a variant of Bede’s quadratic programming algorithm,
and requires a routine DOAQP andagous to DOANLP. For QP dl the constraints must be linear in form, variables
may not be constrained to be integer, but the objective function can be a quadratic expression.

The dud solution is obtained from the LP option, though interpretation of the meaning of the dual is, of
course, up to the user (Reference 5). More detailed descriptions of the various options are presented in Section 4,
but for full descriptions see bnd and Powe113or a general reference book such as Vajda5.

Major options are:-

Linear Programming (LINP)

Integer Programming @IF)

Quadratic Programming (QP)

Discrete Programming (BB)

Parametric Linear Programming @LP)

3. GENERAL OPERATING INSTRUCTIONS

Given that there is a problem which maybe expressed in mathematical programming terms, the first decision to
be made is which method of optimisation is to be used – i.e., is it to be LINP, MIF, etc. (see Section 4)? The
user specifies this on data card, read in by the driver routine, by means of a keyword which causes a branch to the
controlling subprogram for the chosen method. The number of problems to be served with separate data for each
run (see below), and optional comments to document the printout are also read in at this stage.
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Once the program has selected the chosen method it reads in the data specifying the problem. As matrices
and vectors are packed by the program, only non-zero coefficients need be punched. Au the data should be right-
adjusted in the appropriate fields, and should be integer in form with the exception of the elements of the objective
vector (C), the upper bound vector (BOUND), the right-hand-side vector (B) and matrix (A) which may be red and
hence include a decimd point; and the variable TYPE of PLP which is character in format (see Section 4). Some
scaling of the problem may be required due to the implicit restrictions on the she of values which may be read by
the limited field lengths a~ocated on the input cards. The setting of the tolerances is such that the programs work
best if the problem is scaled to bring rdl the coefficients in the A-matrix as close to* 1 as can be achieved without
too much trouble. Note also the more stringent scale requirements for BB and the integer requirements for MIF.

It is possible to run more than one problem within a sin~e job. There are two ways of accomplishing this:

(i) Set the required number of problems (variable NRUN) as input to the driver routine at the beginning of the
run; the program will then return to the driver routine as each separate problem is solved.

(ii) If the same method of optimisation is to be used on consecutive problems, the variable MORE, read in at
run-time, may be set to indicate there are more problems requiring the same method which wfll follow on.
Data for the second and subsequent problems are submitted directly after that for the first, as MORE inhibits
a return to the driver routine.

NaturaUy both methods maybe employed in the same job, but it is important to remember that NRUN
controls the number of branches from the driver program and not necessarily the number of distinct options, which
may be larger than NRUN if the MORE option is also used.

Data input formats and job control statements for the ICL System 4 series machines are specified in
Appendices 1 and 3.

MPCODE traps errors and prints diagnostic messages(generally self-explanatory) for most of the data errors
and abnormal conditions that are likely to occur; the amount of the data input copied out to the printer and the
level of detail in the printout of the solutions are controlled by the user by the appropriate input value of variable
MOREPR (see Appendix 1). These debugging aids are particularly important for mathematical programming where
both problem infeasibdity and unfoundedness frequently occur. The user can control the maximum number of
iterations and re-inversions allowed. If computer time is more vahrable than the accuracy of a solution, partird
(and therefore suboptimal) solutions can be obtained more quic~y than an accurate result by restricting the number
of iterations and reinversions.

The data input formats specified in Appendix 1: Blocks B to F are the same as those of Land and Powe113.
This manual therefore serves as a users’ guide to the system as described and listed in Reference 3.

4. SPECIFIC OPERATING INSTRUCTIONS

This section contains detaded guidance in the use of each of the options avatiable in MPCODE. For each
method a complete example is provided. First the formulation, then the data input are specified for each such
example.

The following standard notation wfll be used throughout.

E or X is the vector of primal variables

y or Y is the vector of dual variables

E or C is the vector of coefficients of the function row

~ or B or WS is the vector of coefficients of the right-hand-side of the constraints.
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A is the matrix of coefficients of the inequalities, so the expression A3 < ~ is a series of linear inequalities.
me slack variables are the dummy variables added to each inequality constraint to make it an equality constraint

(i.e. the slack h the row ~aij~ < bi is the variable xm+i where ~~j~ + xm+i = hi).

It is conventional to designate the inequalities of general constraints in maimisation algorithms as ‘less
thamor-equal’. For particular rows these inequalities may of course be ‘equal’ or ‘greater-than-or equal’, in which
case the corresponding dual variables wiHbe free variables for equality constraints and non-positive for ‘greater-
than-or-equal’ constraints

4.1 Linear Programming (LINP)

This program option deals with the ordinary type of LP problem where au variables and their duds take
real values. Such problems have the general form

maximise g’s

subject to ti_<~

X>o
——

where ~ is not constrained to be integer but may have upper bounds (i.e., 0< xi < ij for some j). The
inequalities (*) may be ‘ >‘ or ‘=‘ for particular rows of the series of inequalities.

As an Nustration of LINP, the following problem is solved.

maximise xl t 3X2 t 10X3

subject to 12x1 t 5X2 t 30X3 <120

2X1 t 10X2 t 30X3 <95

Xl>o

X2>0

0<x3<2

so that &=

[1

x,

‘2
x3

and A =

[

12

2

BOUND, the bound vector, is

5 301
10 30 J

[1–1 where a BOUND of —1 indicates a
–1 variable is unbounded
+2

Data input and solution output are presented in Tables 1 and 6. Solution output is discussed in Section 5.1
For data input format see Appendix 1, Block B.

4.2 Integer Programming (Ml F)

There are many types of problem where it is unrealistic for the variables to be non-integer. For example,
problems where the variables refer to people or whole commodities. Integer Programming is designed for such W
problems, where all variables and coefficients are required to be integer. (For cases where only some of the
variables must be integer see Discrete Programming, Section 4.4.) The method of Integer Forms adds ‘cutting
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TABLE1

tinear programming:exampledata input



.*. .

. . . . L1!IP ILLUSTRATION RUN

....

L,P, #lTti AC CURACV cHECKS AND REf NV EQSIOh S

MO REP R.. 1

IRRAx = 50

IT RtlAX 8 50

M (NO. OF CO DISTRAINTS) . 2, % (NO, OF VA RI ABLE S-- QEAL, NOT 9LACK) - 3,
NUMBSR OF UPPER BOUI/DED VARIABLES . 1,

INPUT CARDS FOR THE C EL EI~fNTS , , , ,
( 1, 1,000)( ? 3,000)( 3 10,000]( ~ 0.000)( o 0,000)( o
(9999999 V9,000) ( o O.ao D)( o 0,000)( c 0,000)( o 0,000)( o

INPUT CA R~:o; ;;(TH: up PEP SOUNDS ~N SIN~L~”;;~IA:LES . , , ,
(3 0,000)( 0,000)( o 0,000)( o
(V9VVVV9VV,000) ( o 9,000)( o 0:000)( o 0,000)( o 0,000)( o

INPUT CARDS FOR THE B VECTOR, THE ?IGHT-HANO 9tOES OF THE CO N9TRAIMT9 , , , .
( 11 120,00>( 21 95,00)( 00 O,oc)( 00 0.00)( 00 0,00)( 00
(VV9VV9VV9V, CO) ( 00 0.00)( 00 0,00)( 00 0.00)( 00 0,00)( 00

INPUT CAR;So;~;(TH~ ROWS OF THE A MATRIX , , , ,
(o 12, QQO)( 2 5.000)( 3 30,000)( o 0,000)( o
(o Z:ooo)( 1 2,000)( 2 10,000)( 3 30,000>( o 0,000)( o
(Vvvvvvvvv, ooo) ( o O,o?c)[ o 0.009)( o 0,000)( o 0,000)( o

0,000)( o
0,000)( o

0,000)( o
0,000)( o

0,00)( 00
0,00)( 00

0.000)( o
0.000)( o
a,oo~)( o

0,003)( o
0.000)( o

0,000)( n
0,000)( o

0,00)( 00
0,00)( 00

0,000)[ o
0,000)( o
0,000)( o

OBJECTIVE 32, QL544190

J,, .1 2 3

BOUNO VECTOR, , , .
-1 .0000 -1,0000 2,0000

X VECTOR. , . ,
3.8636 2.7273 2,2000

1 Y VECTOR 8 9.Ax
.----------------------- ........... (sLACK)

1 0,03bb i 12.0000 S,oooo 30,0000 ; LE 120,00 0,0000

2 0,2818 [ 2,0006 10, OOOC 30,0000 ; LE V5,00 0,0000
( )
...................................

C VECTO; :O; O: ,
3,0000 10,0000

VI A*C, . , .
-0,0000 -0,0000 .0,6546

CO LUN)l 1 2

YOASIS 2 1

YP 0.2818 0,0364

Row XBS XR IWVERSE !.!ATRIx

2 2,7273 O,lovl .0,0?82
:1 S.8636 =0,045s O.ovov

010 O,1OOOE OV, OR IVER
IIOONE

0.0, IMREV o, IR lRINAX so,
O, lSTATE 7, ITR

ISBND
4, ITRMAX 5:: M 2,

PARKK 01 14bXA 1000,
MARX I

wAx,! 25, KAxlt 50,
N

MORE
3, NEGr Nv

a, MXSIZE
O, KEG ROW 0, NEWX 9, NEWY

R 3,863b4,
2, NUFSLK o

SIZE 21 5+IALL 0,1900 E-06, To L(I) O,lOOOE. O2, TO L(2) 9.10 OOE-O2, TO L(3) O,lOOOE. O2
70L(4) O,1OOOE-O2, TOL(5) O,1OOOE-O5, TO L(6) 9,1 OOOE*O2, TO L(7) C,1OOOE.O2, TO L(8)
YAMINC

o,lOOOE. ob, XKPOS 1,0
.0 ,00100

0,000)
0,000)

0,000)
0,000)

0,00)
0,00)

0,000)
0,000)
0,000)

:
50

lSEFF
21

INBAsE
21-1

4 SIMPLEX ITt RAT I01i9.

OPT JI!UM

TABLE 6
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planes’ to the original problem to find the optimum integer solution. This algorithm is appropriate only for problems
with very sm~ (integer) coefficients in the A matrix. It may fail to reach an integer solution within the maximum
iteration count or because the program can no longer find satisfactory additiond cutting planes. If it fails, the branch
and bound algorithm should be used, as this will almost certainly at least produce a feasible integer answer.

MIF requires the appropriate input data (i.e., A, B and BOUND) in integer form. Failure to specify integer
coefficients in the data input produces an error message and program termination at tie data input stage.

The integer programmbg problem used to dlustrate the MIF option has the same form as that used for LINP
with the additional constraint that integer solution values are required. For data input format see Appendix 1:
Block C, and Tables 2 and 7 show data tiput and solution output to the example problem. For a discussion of
the output produced see Section 5.

4.3 Quadratic Programming (QP)

The QP option is an appropriate algorithm when boti linear (red) constraints and a quadratic objective
function are required, for instance when the maximand contains products of two problem variables, such as price
times quantity. It has also been used in econometric problems to obtain regression coefficients that are subject
to linear constraints. The problems take the form:

maximise: p’K+%E’D3

subject to the usual constraints

k_G~

X>o——

and ~ may have upper bounds p is the vector of coefficients of the linear part of the objective function, and D
is the matrix of the quadratic form.

MPCODEuses the basic LP algorithm to solve this type of problem as at least a local optimum may be found
if the problem

maximise: g’ ~

s lbject to: Ag<~

X>o— —

is maximised at the point Ko where q = p + x’o D. This optimum will also be a global optimum if D is
negative definite or negative semi-de~lnit~,o; more generally if the objective function is concave within the
feasible region. For instance, a quadratic function such as an hyperbola will yield a ~obal optimum, so long
as the saddle-point of the function lies outside the feasible region.

The algorithm is not affected by the condition of the D matrix; even a singular matrix D is acceptable.

As an Wustration consider the problem below. It would, of course, be more efficient to divide the rows by
103before solving. However, the large coefficients are retained to provide a test for the tolerance settings.

Maximise

– 853x1 + 994x2 – 879x3 t 991x4 – 907x5 t 989x6 – 936x7

t 987X8 – 961x9 t 984x10 – 987x1 ~ t 982x12

t lx2x8 t 1X5X11 t 1X8X14 + 1xllx17

8
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**. ****.**********.****.*,***** ●☛☛☛✎☛☛✎☛☛☛☛☛☛☛☛✎☛☛☛☛●☛✎☛☛☛☛☛☛✌☛☛☛☛

●☛✎☛ A LAND PROBLEM A

*.***************** .*** ***** ****** +**** ***, *+*. ****. **.** .*. *****

METHOD OF INTEGER FORMS

IRMAx = 20

lTRMAx = 100

M (NO, OF Constraint) . 2, N (NO. OF VA RI ABLE S.-REAL, Nor SLACK) .
NUMBER OP UPPER OOUNOEO VA R1ABLE8 . 10

3,

INPUT GAR; So; ~;(TH; C ELEMENTS , , , ,
(1 3.000)( 3 10,000)( o 0,000)( o
(999999999:000) ( o

0,000)( o
0,000)( o 0,000)( o 0,000)( o 0,000)( o

INPUT CAROS FOR TNE UPPEg ~:~y:s gN SINg Lgo]$;2Ag LES , , . ,
(3 2,000)( o ,
(999999999,000) ( o

0,000)( o 0,000)( o
0,000)( o 0:000)( o 0,000)( o 0,000)( o

INPUT CAR09 POR THE 8 VECTOR, TNE RIGHT. HANO S10SS OF T;Eog;~9T;$lNT9 , , , ,
( 11 120,00)( 21 95,00)( 00 0,00)( 00 O.OO)( 00
(V9V9VV99VV,00) ( 00 0,00)( 00 0,00)( 00 0:00)( 00 0,00)( 00

INPUT CAR~:o;:;(7Nf ROWS OF THE A MATRIx , 0 , ,

(o 12,000)( 2
(o

5,000)( 3
2,000)( 1 2,000)( 2 10,000)( 3

(V99999999,000) ( o 0,000)( o 0,000)( o

OBJECTIVE 31,00006100

Joool 2 3

BOUNO VE:j~;;o; , ,
.1 ,0000 2,0000

I

1

2

s

h

X VECTOR, , , ,
2,0000 3,0000 2,0000

V VICTOR
.-*-. F...-.-. ----------------------

0,0000 ! 12,0000 S,0000 30,0000 ;

0,0000 : 2,0000 10.0000 30,0000 :

0,0000 i 2,0000 8,0000 2s,0000 !

0,2s00 : 4.0000 12,0000 40,0000 i
( )

P ------------ ----------------------

C VECTO; :O; O; ,
3.0000 10,0000

YtA=t. , , ,
=0,0000 90,0001 0,0000

I$cff
0012

30,000)( o 0,000)( 0’
So, ooo)( o 0,000)( o
0,000)( o 0,000)( o

B B=Ax
(SLACK)

LS 120,00 21,0002

LE 9s,00 o,99q9

LE 78,00 0,0000

124,00LE 0,0000

0,000)( o
0,000)( o

0,000)( o
0,000)( o

0,00)( 00
0,00)( 00

0,000)( o
0,000)( o
0,000)( o

0,000)( o
0,000)( o

0,000>( o
0,000)( o

0,00)( 00
0,00)( 00

0,000)[ o
0,000)( o
0,000)[ o

0,000)
0,000)

0,000)
0,000)

0,00)
0,00)

0,000)
0,000)
0,000)

INBA$E
21-1

27 SIMPLEX ITERATIONS,

INTEos R PROGRAM OPTIMUM,

TABLE 7



subject to

looox~ t 1000X2 t 1000X3 = 7000

1000XQ t 1000X5 t 1000X6 = 7000

1OOOX7 t 1000x8 t 1000X9 = 7000

1000X~O t 1000X~l t 1000X12 = 7000

1000X13 t 1000X14 + 1000X15 = 7000 _ _andx>o

loooxlb t 1000x17 t 1000x18 = 7000

2000X* t 3000X2 = 14000

2000x4 t 3000X5 = 140W

1000X7 t 5000x8 = 14000

2000X10 t 3000X,1 = 14000

2000x13 t 3000x14 = 14000,

2000x~6 t 3000x~7 = 14000

Data input format isspecified in Appendix l, BlockD. Illustrations ofdatainput and solution outputarefound
in Tables 3 and 8; the output is discussed in Section 5.

4.4

form

Discrete Programming (BB)

BB is a Branch and Bound algorithm designed to solve problems which maybe expressed in the usual LP

Maximise <’g

Subject to h_<~

X>o— —

and x may have upper bounds. There is, however, the additiond requirement that some or all of the com-
pone~ts of x take discrete values. Different step sizes may be a~ocated to different variables, but each discrete
variable ma~ have only one step size.

A common application of discrete programming is mixed integer programming where some or dl of the
variables are constrained to take integer values. This is equivalent to saying that some or au of the variables take
discrete integer values with a step size of one.

As ‘Branch and Bound’ is a tree search algofithm5 a feasible solution can be obtained by ending the run
before the search is complete. Very frequently, the optimum solution is obtained (and printed) early in the search,
but a very large amount of computing is required to prove that no better solution exists. This characteristic of the
method is useful if computer time is limited; hence BB is provided with a restart facility. On the first run of a
problem, the choice of a value for ITRBBM (the maximum number of iterations) is often little better than a
guess. The computation will fhish when the number of iterations, ITRBB, is greater than ITRBBM, and this may
well occur before the Branch-and-Bound tree has been completely explored. The restart facility allows the compu-
tation to be started in a later run from the point at which the previous run ended.

If a solution is not found within the maximum number of iterations, a representation of the tree is saved
on tape, disc, or card punch on Iogicd unit 07. A description of the saved part of the tree is also printed out. In
any subsequent computer run this data is read in at the beginning from tape, disc or card punch on logical u-nit08,
and a description of this data is printed. Apart from the printing on input and output there is no difference in the
course of the computation between invoking the restart procedure and ignoring it.
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TABLE3

@adratic programming:exampledata input



●☛☛☛

☛☛☛☛ QP EXAMPLC RUN

●***

OUADRATIC PR06RAMMIN0

M c 121N ● 18, NUMBEROF VARIABLES UITH NoN=LINc AR Cocf~lcIENTs m 6,

IRMAx m $0

ITRMAx s 50

M (NO, 0! cONSTRAINTS) 9 12, N (NO, O:, VA RI ABLE SS=REALI Nor SLACX) ● 18,
NuMOER OF UPPER BOUNOCD VARIAOLCU ●

INPUT CAR06 FOR THE C ELEMENTS . , . .
( 1 ●8s3.000)( 2 994,000)( s =8?9,000)( 4 991,000)( 9 9907,000)( 6
( 9 .961,000)( 10 984,000)( 11 .98?,000)( 12 V82,000)( o 0,000){ o
(9V9V99999,000) ( o 0,000)( o 0,000)( o 0,000)( o 0,00D)( O

INPUT CARO$ POR THE B VECTOR, THE R; QHT=NANo I
( 10 7000,00)( 20 7000000)( 50 7000,00)
( Vo lboooaoo)( 100 16000,00)( 110 14000,00)’
(9VVVVVVVVV,00) ( 00 0,00)( 00 0,00)

INPUT CAR~:o;; ;(7H;
(o
(o 2,000){ 4
(o $,000)( 7
(o 4,000)( 10
(o S,ooo)( 13
(o 6,000)( 16
(o 7,000)( 1
(o 8,000)( 4
(o V,ooo)( 7
(o 10,000)( 10
(o 11,000)( 1s
(o 12,000)( 16
(VV9VVVVVV,000) ( o

kOU$ OP THE A MATRIx , 0
1000,000)( 2 1000,000)
1000,000)( 5 1000,000)
1000, OOO)( 8 7000,000)
1000,000)( 11 1000,000)
1000,000)( 14 1000,000>.
1000,000)( 17 1000,000)(
2000,000)( 2 3000,000)(
2000,000)( s Sooo, ooo)(
1000,000)( 8 5000,000)(
2000,000){ 11 3000,000)(
2000,000)( 14 3000,000)(
2oo::::j~~ 1; Sooo,ooo)(0,000)(

P VECTOR , , , .

OES OF THg CON$TRAINT$ c c s o
40 7000,00)( 50 7000,00){ 60

120 14000,00)( 00 0,00)( 00
00 0,00)( 00 0,00)( 00

‘s 1000,000)[ o
6 1000,000){ o
9 1000,000)( o

12 1000,000)( o
15 1000,000)( o
18 1000,000){ o
0 0,000)( o
0 0,000)( o
0 0,000)( o
0 0,000)( o
0 0,000)( o
0 0,000)( o
0 0,000)( o

0,000)( o
0,000)( o
0,000)( o
0,000)( o
0,000)( o
0,000)[ o
0,000)( o
0,000)( o
0,000)( o
0,000)( o
0,000)( o
0,000)( o
0,000)( o

1 2 s 4 5 b 7 8
985S,00 V94,00 987V,00 Vvl, oo .V07*O0 V8V,00 .9 Sb,00 Va?, oo

15 14 1s lb 17
0,00 0,00 0,00 0,00 0.00 0,::

THE O MATRIX 0$ NONLINEAR CO EPF1C!ENT8, , , ,

ROW
1
2
3
4
$
b

cOLUMN 1
VARIABLE 2
2 0,0000
8 1,0000

0,0000
1: 0,0000
14 0,0000
J7 0,0000

2 5 4 b
8 5 1:

1,0000 0,0000 0,::00 0,0000 0,:;00
0,0000 0,0000 0,0000 1,0000 0,0000
0,0000 0,0000 1,0000 0,0000 0,0000
0,0000 1,0000 0,0000 0,0000 1,0000
1,0000 0,0000 0,0000 0,0000 0,0000
0,0000 0,0000 1,0000 0,0000 0,0000

V8V,000) {
0,000)(
0,000) (

7000,00)
0,00)
0,00)

0,000)
0,000)
0,000)
0,000)
0,000)
0,000)
0,000)
0,000)
0,000)
0,000)
0,000)
0,000)
0,000)

a.
.V61 ,00

:: 14000,00)( 80 14000s00)
0,00)( 00 0,00)

00 D,00)( 00 0,00)

o 0,000)( o
0 0,000){ o

0,000)( o
: 0,000){ o

0,00D)( O
: 0,000){ o
0 0,000)( o
0 0,000)( o
0 0,000)( o
0 0,000)( o
0 0,000)( o
0 O,ooo)t o
0 0,000){ o

11
V84, !! 9V87V00

0,000)
0,000)
0,000)
0,000)
0,000)
0,000)
0,000)
0,000)
0,000)
0,000)
0,000)
0,000)
0,000)

12
V82,00

IN THE FOLLOUINO OUTPUT, THE C VECTOR CONTAINS THE PARTIAL OERIVATIVES 0? THE QUAORATIC FUNCTION, THREE MAY SC
MORC CONSTRAINTS PRESENT THAN THE M $P~CIFIEO oR161NALLYI SUT THEY HAv E 2CRo oUAL vALUE$*
ALL VARIABLES HAVE OEZN AS8UME0 TO HAVE AN UPPER 00UNO OF 10C1O UN LES$ OTHIPWIIE SPECIFIRO,

TABLE 8
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81Nc E N EXCEEDS 7 AN ABBREVIATED FOnM Of PRINTING fOLLOWS
THE 810N(I) VCCTO& 1NOICA7ES THe SIGN OF THE I=TH CONSTRAINT, O FOR gQ, 1 FOR LE, .1 FOR GE,

NON-ZERO ELEMENTS OF THE A MATRtx, FOLLOUEO BY THEIR COLUMN LABE LS, ,,,

1 2 3 4 5 b ?
3000,00: 1000,000 1000,000 1000,000 1000,000 1000,000 ?000,000

2 5
1000,00; looo, oo~ looo,o~~ looo,o~~ 1000,01!

4 5 b 7 lZ

looooo~; looo,o~~ looo,o~~ looo, o~; looo, o~; looo, o~; 2ooo, o!~ $ooo, ot~ zooo, o!~ 3000,08; 1000,0!; Sooo, oi$
8

?ooooo~~ 3000.0;; 2000,0;; sooo,o~~ 2000.0;; 3000,0?1
31

0,000
1? 1

THE fOLLOHING VECTORS SHOU THE STARTING POINTS OF THE SUCCESSIVE ROMS

f2545 10 11
147101$1:1; 2:2; 2527 :: ;:

OBJECTIVt lSlb6,19500000

J 1 2 s

C VECTOR 985$,0 99b,8 9879,0

BOUNO VECTOR ********. +******** ●.**.+***

x VECTOR 0,0000 4.bbb7 2,ss$3

YIA.C 1224,53 0,00 0,00

OF A IN THE ABOVC LIST O? THR NO N.ZCRO ELEMINTI, I,,

4 5 b 7 8

991,0 .907,0 989*O .9Yb,0 99b.3

●******,* ●,*. ****. ●**.***** .****. *** ●.*******

7,0000 0,0000 0,0000 0,0000 2,8000

0,00 1899,00 90,00 3b6, b7 90,00

9 10 11 lZ 1s Jb 15 lb 17 18

_Qbl ,0 984,0 ●q82,3 982,0 0,0 2,8 0,0 0,0 0,0 0,0

●**O***** ●******** ●4******* *****.*** .***** *.* ●.******* ●...***** ●******** ********* ●.*******

4,2000 7,0000 0,0000 0,0000 0,0000 4,bbb7 2,3s33 0,0000 b,bbb? 2,33ss

0,00 0,00 ~qbt,ss .0,00 I,8T 90,00 0,00 0,00 0,00 0,00

I 1 2 3 k s b ? 8

B VECTOR 7000,0 7000,0 7000,0 7000,0 7000,0 7000,0 16000,0 14000,0

SIGN 0. 0, 0, 0, o* 0, 0, 0,

Y VgCTOR 90,8tqo 0,q8q0 -O, qb10 0,q820 0,0000 0,0000 0,6?S3 000010

B-AX 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000

q 10 11 f2 1s

14000,0 14000,0 14000,0 14000,0 q82,0

o, 0, 0, 0, 1.

o,5q15 0,0010 0,0009 0,0000 0,0000

0,0000 0,0000 0,0000 0,0000 q82,0000

I$EFP
111812910723456 0

INBA8E
017z 01105840 120590b10

1S B: MPLgX ItSRATIONg,

OUAORATJC PROGRAM OPTIMUM,

TABLE 8 (continued)



The restart facility is employed, and an attempt dl be made to write to logical unit O? if the problem
has not been solved and

where:

Note:

ITRBBM – ITRBB < MNOW

MNOWis the number of constraints

ITRBBM is the maximum number of ~iterations

ITRBB is the current number of LB iterations

An attempt wfll be made to write to unit 07 if these conditions me satisfied.whether or not provision
has been made for output to unit 07. If no provision has been made and the restart facifity is invoked,
the program will fail.

The BB restart facility included in MPCODE uses subroutines with unformatted input/output for the saved
data items. This facdity is~therefore, o~y appropriate in MPCODEfor use with disc or tape units allocated to
logic units 07 and 08. Users wishing to use a card punch on units 07 and 08 WMneed formatted read and write
statements necessitating minor changes in code. For detafls of this variation”of the code, the alterations required,
and a full description of the relevant sub-routines see Reference 3, Chapter 5.

To demonstrate the use of the BB option consider the following problem

Maximise 2x ~ t 3X2 t 1OX3

Subject to 24x ~ t 5x2 + 30X3 > 1200

4X1 t 1OX2 t 30X3 > 950

and Xl>o

X2> o

O< X3 <20

with step sizes of 5 for X1, 10 for X2and X3.

BB is particularly sensitive to the requirement that A coefficients should be kept within a range, since there
is a risk of spurious unfeasibility occurring and hence large parts of the tree not being examined. The A matrix
coefficients for BB should be kept within t 0.001 and t 10.0 particularly for large problems. Note that this may
necessitate setting a large step size for some variables.

Data input format for BB is described in Block E, Appendix 1. Illustrations of data input and solution out-
put appear in Tables 4 and 9; the output is discussed in Para. 5.

4.5 Parametric Linear Programming (PLP)

This option allows the user to vary various elements of the problem after an initial optimal LP solution has
been found and to discover how this optimal solution changes under these variations. Parametric programming is
a form of post-optimal analysis which is a very important tool to the LP user. It Mows him to examine the stability
of a solution when certain parts of the data are varied without having to re-run the complete analysis: it is, therefore,
possible to discover a great deal about the nature of the solution and the problem itself in a single run.

Parametric programming is particularly useful if solutions are required to a problem which has a range of
values for ‘WS ‘or objective function elements. There are many formulations which require this type of approach.
The algorithm is designed to vary only single elements in the RHS and objective function, but a reformulation of
the problem (see 3) enables the whole RHS or objective function to be varied.
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TABLE4

Bscrete programfig (Bran& and Bound): exampledata hput



**. *
.*** RR A!4cP A*D BOU!J2 lLLus TRA710N

●*.*

BRANCH AND BOUNO

M (NO, OF CO NSTRA1!JT$) = 2, i! (NO, OF VARIABLES) = 3,
S OF THE VA RI ASLES ARE TO TAKE DISCRETE VA LIIES,

IRMAx m 50

ITRIIAX * 25

M (Mu, OF COh ST RAINTS) = 2, k (KO, OF VA31ABLES--REAL, NOT SLACK) u 3,
NUMSER OF UPPER BoUNDED VARIABLES . 1,

INPUT CAR;So~~;(TK: t EL EHEIJTS . . . .
3, JO I!)( 3 ID.00J)( 1>

;99:9VV9V9:O09)( o
0.000)( o 0,000)( o

0,0C9)( o 0,000)( o 0,000)( o 0,000)( o

INPUT CARDS FOR Th: UP PEP BOUNOS 0!! SINGLE VA PIABLES . . , .
(3 20.00C)( (I,ooc)( o 0,000)( 1! 0.000)( 9 0,000)( o
[VVVVV9VV9,00C) ( o 0,902)( o 0,000)( [’ 0,003)( o 0,000)( o

INPUT CAROS FOR THC B VECTOR, THE RIGHT=HAND SIOES OF THE CONSTRAINTS , . , ,
( 1200,0C)( 21 *50.99)( @c 0,0’>)( 00 o.on)( 00 0,00)( 00
lvvi49vv9vv, oo) ( 00 O,ofl)( OQ 0,09)( 00 0,00)( 00 0,00)( 00

INPUT CAROS FOR THE RoWS OF THE A llATRIx , . . ,
(0 1,000)( 1 26,00(!)( 2 5,000)( 3
(o 2,000)( 1

30,000)( o 0,000)( Q
4,000)( 2 lC,000)( 3 39,00C)( o 0,000)( o

(VVV99V99V,000) ( o 0,001?)( ,1 9,00U)( p 0,302)( o 0,000)( 9

o.ono)( o
0,000)( o

0,000)( o
o,ono)( o

o.no)( 00
0,00)( 00

0,000)( o
C,ooo)( o
0,020)( o

0,000)( o
0,000)( o

0,000)( o
0,000)( o

0,00)( 00
0,00)( 00

0,000)( o
0,000)( o
0,000)( o

0,000)
0,000)

0,000)
0,000)

0,00)
0,00)

0,000)
0,000)
0,000)

TABLE 9



THE LP OPTll~Ul;, {ITI, FU!ICTIOI: VALUEZ“, or,o”ooo 32 J.45635V0, REACHED AT lTERATIOI 4, 1S AS FoLLCUS, ,.
19,3181760 27,2727290

OBJECTIVE 320,456350a0

J,, ,l 2 3

BOUND VECTOR, , . ,
-l, OL’Q? .1. !0’!9 20,,)1.OC

x

1 Y vECTOR

VECTOR. , , ,
19,3182 27,2727 20,0 Gr’o

B B.&x

1 0,0366

2 0,2818

c

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (s1AcK)
(
( 24.0000 5,0000 30.0?00 ; LE 1230,00
(

0.0000

( 4,0000 10,0000 30,000(1 I LE 950,00 0,0000
( )
...................................

LECTOR, , . ,
2,00no 3, COPQ lo, ngno

YI A-C, , , ,
O.onoo -0.0009 .o, b545

lSEFF
21

lNBASE
2191

4 SIMPLEX iTEUATIOWS.

90 LUTf ON SATISFYING OISCRETE CO N9TRAr NTS, 40, 1, wITH FUNCTION VALUE, S09,99976 AT ITERATION
lo, oooooo~ 3(,GG1inoc:,

7
20,0000300

THE vALUES OF THE SLACK VA PIABLES AR E...
209,9992100 9,999k966

THE FIXEO VA R! ABLES AR E,,,
2 3 1

FIXf~,AT V;: UES, ,,
, 40.

1NFEA8t BLE TAIL AT ITR, 1:!,
THE FIXEO VARIABLES AR E,..

2 3
?IXEO AT VA LUES, ,,

&c. 20,

A TAIL WITH FuNCTIOk AT LEAST AS LCV AS TAE BLST DISC RkTE SOLUTION SO $AR, AT lTR.
WITH FUNCTION 306.16650 A;iD FIx EO VA RI ABLE S..,

2 3
FIXED AT VA LUES, ,,

50. 10,

A TAIL U1t H FUICTIOIJ AT LEAST AS LCU AS THE BEST DIsCRETE SO LUTIO?l So FAR, AT lTR.
WITH FUN CT IOli 305,0coo0 hhiD FIXED VA RI ABLE S,,.

2 3
FIXED AT Vf; UCS. ,.

6C. ,

INFEASIBLE TAIL “T lTR, 10.
THE FIXEO VARIABLES APE, ,,

2 3
FIXEO AT V$:UESO, .

70, ,

A TAIL 111TH FUI.CT IOI, AT LEAST AS LQK AS THE BEST OISCRETE SOLUTION 90 FAR, AT !TR,
WITH FUN CT IOll 306,66650 AP,Q FIXED VA RI AS LES, ..

2 3
FIXED AT VA LUES, .,

80, 0,

A TAIL WITH FuflCT IOII AT LEAST A9 LOW AS THE BEST DIsCRETE SOLUTION SO FAR, AT ITR,
WITH FUNCTION 295,00000 A;IO FIXED VA RI ABLE S,,.

2
PIXEO At VA LUES, ,.

90.

ALL BRA NCHE9 OF THE TREE HAVE SEEN EXPLORFD, AT ITERA TIOb 19, AvD THE OPT IMU+! DISCRETE SOLUTION IS NO,

12

14

18

1?

TABLE 9 (continued)



The first part of the PU algorithm performs an ordinary LP optimisation (as in LINP) whfle the second
part carries out the parametric variations on the optimal solution so obtained if indeed there is one to be found.
There are three types of parametric variations avtiable with PLP:

(i) Variation of an element or elements of the RHS, (~, within specified limits, or variation of an element
or elements of the objective function, (c~, between specified limits. Solutions Of any) are found for the
problem.

Maximise g‘ A such that A_< Q where

x> o——

the jth component of E varies such that rj ~ cj < lj

the ith component of Q varies such that si < bi < ti

(ii) Perform sensitivity analyses on.a RHS or an objective element. Thus a component of ~ or L is varied to
find the range of values of the specified element of b or c within which the initial u solution remains
feasible and optimal.

— —

(iii) Perform a range analysis on dl RHS or objective elements,with less printing.

The type of parametrisation is contro~ed by ~E. T~E t~es’the vahre “B” for RHS parametrisation
and ,’cC”for parametrisation of the objective function. For complete data input formats see Block F of Appendix 1.
~lustrations of data input and solution output appear in Tables 5 and 10; the output is discussed in Section 5.

We shafl now extend the problem posed in 2(i) for LINP with the following additiond data to illustrate the
case of PLP: -

Vector Element
Lower bound of Upper bound of
variation range variation range

5.

RHs bl 50 200

RHs b2 95 150

Objective function c1 –1 1

Objective function C2 1 5

Objective function C3 10 20

DISCUSSION OF SOLUTION OUTPUT FORMAT OF THE SOLUTIONS OBTAINED

This Section gives some aid in interpreting the outputs to the examples posed in Section 4.

Al printed output has the foflowing general layout:

Page 1:

Page(s) 2:

Page(s) 3:

Program Title

This page contains the run number of the particular problem. There will be NRUN such numbers.
Following this any comments inserted at the beginning of the problem data are printed. The method
employed by this particular problem is then stated.

This page contains details of data input and the problem solution. As the volume and type of this
part of the output depends on the print control variable MO~PR, we will restrict our discussion to
the examples presented in this guide. This discussion follows in Sections 5.1 to 55.

If MO~PR # o, page 3 is repeated, and pages 2-3 are repeated NRUN times.
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TABLE5

hrametric linear programming:example data input



●✎☛☛

●☛☛☞

●☛☛☛

PLP ILLUSTRATION

PARAMETRIC L,P,

NUMBER OF PA RAI,,ETRIc REOL!ESTS 5 PRINT VARIABLE O
s 1 50,000 200,000

95.000 150.000e 2
c .1 ,000
c

1 ;000
i 1,009 5,000

c s 10,000 20,000

THE VALUE

MOREPR ■

IRMAx v

lTRMAx D

u (NO, OF
NUMBER OF

OBJECTIVE

1000 000, OOO WILL REP RESSNT PLUS IIIFINITV 4N0 THE VALUE .1000000,000 WILL REPRESENT MINuS INFINITY,

25

100

50

CONSTRAINTS) = 2, N (NO, OF VARIABLES--REAL, NOT SLACK) . 3,
uPPER BOUNOEO VARIABLES . 1,

32,065 &6t O0

J,, .1 2 3

BOUNO VE:; ::40; , ,
.1 ,0000 2,0000

F VECTOR. , . ,
3, S636 2,7273 2,0000

1 Y VECTOR
. -- . . . - . -- . . . . . . . . . . . . . . . . ---------

1 0,0364 i 12,0000 5.0000 30.0000 ;

2 0,2818 i 2.0000 10,0000 30.0000 !
( )
------------- ..-.--.-..=- ----------

C VECTOR. , . .
1,0000 3.0000 10,0000

VVA*C. , , .
-0.0000 -0.0000 .0.4546

lSEFF
21

lNBASE
21.1

4 SIMPLEX tTERATIONS,

OPTIMUM

B 8=Ax
(SLACK)

LE 120,00 0,0000

LE 95,00 0,0000

21



PA RAN ETRIC vARIATION OM THE OBJECTIVE FUN CT IOI: EL EIIENT OF VARIABLE 1

INITIAL BASIS OPTI!IAL BE TUE[:I 0,600 AVO 1.333

OBJECTIVL 32,045 VA LLIE OF OBJECTIVE FU!:CTION EL EklENT 1,000
VALUE OF OUAL VA RI A6LE5

0,0364 0.2818
VALUE OF ycA=C ELEMENTS

0.0000 .0 ,0000 -0,4546

09 JECT1VE 32,045 VALUE OF OBJECT~VE FUR CTIOX EL E1lENT 1,000
vALUE OF OUAL vAu IAOLES

0,03b4 0,2818
VALUE ::o;;~nC EL EPENTS

-0,0000 -0.6546

!NITIAL SASIS OPT INAL SE TkEE:i 0,600 AND 1,333

SA$19 OPTIMAL BE7WEEh ‘1000 f130,000 ANo 0,600
VARIABLE 1 fS NoN BASIC

OBJECTIVE 30.500 VALUE OF OSJECTIVE FUNCTION ELEMENT 0,600
vALUE ~:o::;L VARIABLES

0.3000
vALUE OF Y’A-C ELEMENTS

0,0000 0,0000 .1 ,0000

SNO OF PARAMETRIC VARIATION OF VARIABLE 1

PARAMETRIC VARIATION ON THE oBJEcTIVE FUN CT IOII ELEMENT OF VARIABLE 2

INITIAL BA91S OPTIMAL 8ETMEE!{ 0,617 AFdO 3,167

oBJEcTIvE 32,045
VALUE :: O:::L VARIABLES

0.2818
vALUE OF VI A-C ELEMENTS

0,0000 .0 ,0000

BAS19 OPTIMAL BE TKEEN

OBJECTIVE 32,500
vALUE OF DUAL VARIABLES

0,0333 0.3000
VALUE OF Y~A-C EL EM EhTS

0,0000 0,0000

OBJECTIVE 67,500
VALUE ::o;;~L VARIABLES

0.5000
VALUE OF Y’A=C EL EM ENT9

0,0000 0.0000

VALUE OF OBJECTIVE FIINcTIo N ELEMENT

-0,4546

3,?b7 ANO 5,000

VALUE OF OBJECTIVE FllkCT IOti ELEMENT

0.0000

VALUE OF OBJECTIVE FUNCTION ELEMENT

5,0000

INITIAL BASIS OPTIMAL BE TV EE;I 0,417 A~:o 3,167

09 JECTIVE 26. S91 VALUE OF 09 JECTIVE FUNCTION ELEMENT
VALUE :~o;;;L VARIABLES

0,0636
VALUE OF VSA=C ELEMENTS

0,0000 .0 ,0000 -5.9091

sNO OF PARAMETRIC VARIATION OF VARIABLE 2

S,ooo

3,167

5,000

1.000

PA RA!!ETRIC VA R1ATION ON THE oBJEcTIVE FUVCTION tLEMENT OF VARIABLE 3

INITIAL BASIS OPTIMAL BE TUEEN 9,545 ANO 1000 000, OOO

OBJECTIVE 32.045 VALUE OF OBJECTIVE FUNCTION ELEMENT 10,000
vALUE OF OUAL VA RtABLES

0,0366 0.2818
VALUE OF VIAWC EL EPENTS

.0,0000 .0,0000 -0.4540

EMO OF PARAMETRIC VARIATION OF VARIABLE 3

TABLE 10 (continued)



PARAMETRIC VARIATION ON THE RIGHT HAND 91OE OF CONSTRAINT 1

lNITIAL BA91S FEASIBLE BE T~EEN 77,500 AND 270,000

OBJECTIVE 32,045 VALUE OF RIGHT HANO 8]OE 120,000
VALUE OF REAL VARIABLES

3,8636 2.7273 2,0000
VALUE OF 9LACK VARIABLES

0,0000 0,0000

0BJEC71VE 34,955 V8LUE Of RIGHT HANO SIDE 200,000
vALUS OF REAL VARIABLES

11,1364 1.2727 2,0000
VALUE Of SLACK VA RI ASLES

0,0000 0,0000

INITIAL BASIS FEAs JBLE sETjEEN 77,500 AND 270.000

BASIS FEAS ISLE SE TUEEN

VALUE OF REAL VARIA~~~~oo
oSJECTIVE

0,0000 3,s000
VALUE OF SLACK VA RI ASLES

0,0000 0,0000

08 JEc TIVE 28,667
VALUE OF REAL VARIABLES

0,0000 q,oooo
VALUE OF SLACK VA RiA8LE9

0,0000 0,0000

47,500 ANO 77,500

VALUE OF RIGHT HANO S1OE 77,500

2.0000

VALUE OF RIGHT HANO S1OE 50,000

0.1667

ENO OF PARAMETRIC VARIATION OF CON9TRA1NT. 1

PARAMETRIC vARIATION ON THE RIGHT HANo slo E oF CONSTRAINT

lNITIAL SA91S FE AS ISLE BETIEEN 70,000 ANO

oBJEcTIVE s2,065
vALUE ;:8~~:L VARIABLES

2,7273
vALUE OP 9LAGK VA RI ASLE$

0.0000 0,0000

VALUE OF REAL VARIA~~~~45
oBJECTIVE

l,3b36 8.7273
VALUE ~[o~~~CK VARIASLE9

0,0000

VALUE OF RIGNT HANO SfOE

2.0000

VALUE OF RIGHT HANO 910E

2.0000

INITIAL BASIS FEASIBLE BE TNEEN 70,000 ANO

OS JSCTIVE s2,045 VALUE 0? RtGNT HANO sIo E
VALUE OF RSAL VARIABLES

3,8636 2,7273 2,0000
VALUE OF 9LACK VARIABLES

0,0000 0,0000

180.000

2

95,000

150,000

180,000

qs, ooo

SNO OF PARAMETRIC VARIATION OF CONSTRAINT 2

TABLE 10 (continued)
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5.1 Linear Programming – Page 3 of the output produced by LINP

Problem formulation and data input are described in Section 4.1
The output is shown in Table 6.
Data Input formats are specified in Appendix 1, Block B.

As MOREPR = 1, there is a fair amount of solution and data printing (see Appendix 1, Block B). The value
of MOREPR is printed together with the maximum allowable number of reinversions (IRMAX) and iterations
(ITRMAX). me data input is printed in toto – this is self explanatory if studied in conjunction with Table 1.
The actual solution to the problem then follows.

The figure against ‘OBJECTNE’ is the current (i.e., optimal in this case) value of the objective function L’K.
As the number of variables, N, is less than 8 in the example the problem is set out in pictorial form (an example where

N >8 is used in para. 5.3). A bound vector value of –1 indicates that this variable element has no individual upper
bound (see Appendix 4). The box contains the A matrix, and the objective function coefficients are pointed directly
underneath, whfle the RHS values appear to the right with the type of constraint – LE (~ in this case.

The primal values at the optimum (i.e., the current values) are printed in the row following ‘X VECTOR,
while the dud vahres are printed column-wise under ‘Y VECTOR. The ‘B-AX’column contains the values of the -
clack variables of each row.

As MOREPR = 1 in the example, the page following the main solution contains a print of the reduced inverse
matrix along with other variables which may be of help in the event of a feasible or optimal solution not being found.
A description of the role played by each of these variables maybe found in Appendix 4.

5.2 Integer Programming – Page 3 of the output produced by MI F

Problem formulation and data input are described in Section 4.2. Data Input formats are specified in
Appendix 1, Block C. Solution output is shown in Table 7.

The output is similar to that for LINP (5.1) except that all solution values are generafly integer. As MOREPR = @
in the example, the inverse print, etc., has been suppressed.

The user should be warned that due to the tolerance levels used here for MPCODE and the use of single precision
variables in the program, some solution values of integer variables may not be exactly integer. For example. 2.Q~@l
may appear instead of 2; this should cause no concern.

5.3 Quadratic Programming – Page(s) 3 of the output produced by QP

Problem formulation md data input are described in Section 4.3
Data input formats are specified in Appendix 1, Block D.
Solution output is shown in Table 8.

As for LINP (Section 5.1), data input is printed out before the program starts to optimise. The subsequent
output from the QP example differs from that of the other examples as N, the number of variables, is greater
than 7. On ti occasions, and in all options, when N >8 the solution cannot be output in picture form due to the
limitation of the page width, and an abbreviated form of the solution is printed instead.

The non-zero elements of the A-matrix are printed in row-vector form. Each element is numbered (above each
element) and these numbers are used to indicate the starting point of each successiverow. This information follows
the A-matrix print. Thus, in our example, the first row starts at element number 1, the second at element 4, and so
on. Beneath each element is printed the variable associated with that element.
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The objective function value foflows,

The C, X and (Y’ A – C) vectors are then printed row-byrow with each element under its respective variable
number, J. For QP the C vector contains the partial derivatives of the quadratic function. The X vector holds the
current values of the variables, as indeed it does for dl MPCODEprintouts.

Fina~y in the example (as MOREPR = 0, the inverse print, etc., is suppressed) the B vector and sign, the Y
vector and the (B – AX) vector are printed row-wise, each element under its respective row number, I. There may
be more constraints present than were originally specified, but they WMthen have zero dud values. The sign vector, S,
indicates the sign of the Ith constraint: ~ for “equal”, 1 for “less-than-or-equti’, – 1 for “greater-than-or equal”.

5.4 Discrete Programming – Page(s) 3 of the output produ~d by BB

Problem formulation and data input are described in Section 4.4.
Date input formats are described in Appendix 1, Block E.
Solution output is ~own in Table 9.

The Branch-and-Bound algorithm uses as a starting point the continuous LP solution. The first part of the
solution output on page(s) 3 is therefore the solution as obtained from LINP (Section ‘5.1). IPRBB = 1 in the
example, so the solution is printed in fu~.

The program now proceeds with the tree search, and the rest of the output records detafls of each step in the
search at the level of detafl specified by the chosen vrdue of IPRBB.

As IPRBB = 1 in the example, the fixed variables and their values are printed at each integer solution found.
The first integer solution is, therefore, 310 (printed as 309.999 for the reasons stated in 5.2). This values is found
with the variables xl, X2, X3 fixed at 10, 30, 20 respectively. The variables xl and X3 are hen freed at 40 and 20,
and x 1 is varied. This tad of the tree is not feasible and is, therefore, not a candidate for a further revision of the
xl value. Al branches of the tree have now been explored, and a message is printed to this effect, together with the
current best discrete solution, which in this case is the first. The solution is, therefore, X1 = 20, X2= 10, X3 = 30
with an objective function value of 310.

More diagnostic printing is available by setting IPRBB >2 (see Appendix 1): these settings are of particular
assistance when MPCODE is being used to develop new algorithms and for full explanations of the specialised print-
outs thus obtained, and a description of the BB algorithm, see Reference 3.

As the maximum number of iterations has not been exceeded, the restart facdity was not invoked by the
program.

5.5 Parametric Linear Programming – Page(s) 3 of the output produmd by PLP

Problem formulation and data input are described in Section 4.5.
Data input formats are specified in Appendix 1, Block F.
Solution output is shown in Table 10.

PLP carries out a parametric analysis on the LP optimum. The first part of the solution output on page(s) 3
is, therefore, the data input and solution similar to that obtained from LINP, except that in the example MOREPR = @
so the inverse print, etc., is suppressed.

The rest of the output contains details of the parametric analysis required.

In the example quoted, the first variation required is that of the first constraint with the RHS ranged between
50 and 200. The initial basis is found to be feasible between limits of 77.5 and 270 for the RHS. At the initial basis
stage the values of the objective, the primal variables, the slack variables and (as IPRPLP = Q) the values of the dual
and function variables are printed. The value of the parameter, the RHS of constraint 1, is increased to 200 and the
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values of the solution variables are printed. The value of the parameter is decreased to 77;5 and the lower limit,
47.5, of the parameter for that basis is calculated. The solution values when the MS of constraint 1 is 77.5 are
printed. Finally, the solution values at the lower limit, 50.0, of the specified range are printed.

The parametric variation of the right-hand-side of constraint 2 works the same way.

me parametric analysis of the objective function coe~fecient of X1 (C1) is appro~ched,next. me initial basis
is found to be optional between 0.6 and 1.333, and we objective value of 32.045 is found when c1 = 1. The dud
vector, (Y A – C) vector, red and slack variables are printed d’ong with this information. As with the WS variations
the rest of the C1range (– 1< c1 <1) is investigated in 3 further simflar steps and it is discovered that the ‘central’
value of c1 is 1. (The initial LP solution in this case).

Parametric variations of the other two objective function elements are then done in the same manner, and as
d variations have then been completed, the process ends.

6. AVAILABILITY OF MPCODE

The version of MPCODE described in this Report includes a driver routine. and tolerance levels set to allow sin~e
precision declarations of dl variables: ‘this code has been run on IBM“360and ICL Series 4 machines.’ The basic
version of this code is completely specified in Land and Powell’s book3, and has been run on ICL 1900, CDC 6600
and Univac 1108 and rdso on an IBM 36.0when.double precision had been declared for the variables. This manual
refers equrdly to both versions, although the driver routine is clearly ody applicable to the IBM/ICL sin~e precision
release.

A standard 9 track, 800 bpi, IBM compatible tape has been prepared to support the system, and its contents
are as follows in fixed length block format for records of 800 8-bit characters per block (1Ocard images per block)
in odd parity with an interlock gap of 1.5 cm. The code is EBCDIC.

ICL/IBM standard volume label

ICL/IBM standard header label

Tape Mark

Descriptive cards specifying the tape format, contents and references to documentation.

Tape Mark

Card images of the code precisely as published in bnd and Powell’s book, Reference 3, (as for
CDC 6600 and ICL 1900).

Tape Mark

Card images of the MPCODE code precisely as supported by this TRRL Report (as for ICL 4/70 and IBM 360/370).

Tape Mark

Data cards required to generate LI~ example as in Reference 3.

Data cards required to generate MIF example as in Reference 3.

etc.

Tape Mark

Tape Mark

Arrangements can be made to copy this master tape onto tape supplied by prospective users.
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9.

DATA

APPENDIX 1

INPUT FORMATS

~eseare theinput cards required foreach complete run. Afldata should beright-adjusted within their respective
fields, and values should be integer except for the C, BOUND, B and A vectors which may take red values, and the
variable “WE” in PLP which requires data in character form.

indicates a si~ificant blank space.u

Block A

Data Input required to initirdise MPCODE for each complete job.

Field Format Intemrd Name Specification

Card 1 Cols 1-5 (15) NRUN Number of runs with
different data inputs
and methods

Card(s) 2 Cols 1-4

Card 3 Cols 1-4

(A4)

(A4)

**** Comment card. Anything
entered on this card is
printed on execution. Any
number of these may be used.

Keyword. me only valid
entries are:

LINP Linear Programming

QP-= Quadratic Programming

MI F-
Integer Programming
@ethod of Integer Forms)

BBM= Mixed Integer Programming
(Branch and Bound)

PLP - Parametric Linear
Programming

Block A together with any one of the Blocks B – F (see below) is repeated NRUN times. Blocks B – F: Data
cards for optimisation by the method chosen in Block A.

Block B

Input cards for LINP (to be preceded by Block A).

Field Format Internal Name Specification

Card 1 Cols 1-10 (110) M Number of constraints

Cols 11-20 (110) N Number of variables

Cols 21-30 (110) lSBND Number of bounded
variables
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Field Format Internal Name Specification

Card l(Contd) C01S31 -40 (110) M~REPR =0:

Card 2

Cols 41-50 ‘(110), ITRMAX

Cols51 -60 (110) lRMAX

Cols 1-3 (13) J

C01S5 -10 (F6.0) C(J)

Print the input data,
do not print the inverse
matrix in ~RINT.

Print the input data
and inverse matrix.

Print the inverse matrix
but not the input data

Do not print the inverse
matrix or input data

Maximum number of iterations

= @ : will be set to

3* (M t N t (No. of bounded variables))

Maximum number of reinversions.
20 is a reasonable number to
start with.

Number of a non-zero element
of the objective function.

Element of the objective
function

Cols 11-13 (13) J

Cols71 -73 (13) J

Cols 75-80 (F6.0) C(J)

Card 2 is repeated untd all non-zero elements of the objective function have been specified, up to 8 per card.

Card 3 Colsl -10 (110) 9999999999 Terminates input of the
objective function elements

If ISBND >0, the next card is Card 4, otherwise it is Card 6.

Card 4 Cols 1-3 (13) J Number of a variable with
an associated upper-bound

C01S5 -10 (F6.0)

Cols 11-13 (13)

BO~D(J)

J

Value of the upper bound
on the Jth variable.
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Field Format Internal Name Specification

Card 4 (Contd) Cols 15-20 (F6.0) BO~D(J)

. .

Cols71 -73 (13) J

Cols 75-80 (F6.0) BO~D(J)

Card 4 is repeated untd dl the ‘upper bounds have been specified (up to 8 on each card). (Any not specified are “
assumed to have no upper bounds.)

Card 5 Cols 1-10 9999999999 Terminates input of the
upper bounds. .

Card 6 Cols 1-3 (13) I Number of an element of
the, B (MS) vector.

Col 4 (11) s(I) Type of constraint

.=@: an equality constraint
= 1 : a < constraint
= 2: a > constraint

C01S5-10 (F6.0) ‘3(I) The Ith element of the
B vector.

Cols 11-13 (13) I

Col 14 (11) s(I)

Cols 15-20 (F6.0) B(I)

Cols71 -73 (13) I

Col 74 (11) s(I)

COIS 75-80 (F6.0) B(I)

Card 6 is repeated as usual untfl all the elements of the B vector have been specified. Any not specified are assumed
to be less than a very large number ( 108 for System - 4).

Card 7 Cols 1-10 9999999999 Terminates input of the
B elements.

Card 8 C01S5 -10 (15) I Number of a row of the
A-matrix

Cols 11-13 (13) J Number of a column of
the A-matrix.
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Field Format Internal Name Specification”

Card 8 (Contd) Cols21 -23 (13) J

Cols 25-30 (F6.0) A(I,J)

Cols 71-75 (13) J

Cols 75-80 (F6.0) A(I,J)

Ml the valueson a card must belong to the same row, but they need not be in correct column-order. The rows
must, however, be in correct row order. 7 values may be specified on each card, and Card 8 is repeated ttil afl
non-zero entries in the A-matrix have been specified; any values not specified here are assumed to be zero.

Card 9 Colsl -lo 9999999999 Terminates input of the
A-matrix elements.

Card 10 Col 10 (110) MORE = Q: more problems are
to be specified for optimi-
sation by LINP*; Block A
need, therefore, not be
repeated unless there is
another problem by a
different method.

= Q: No more problems for
this method (unless block
A is repeated).

Block C

Data Input for MIF (to be preceded by Block A).

As in Block B except that if ITRMAX is read in as ~, it WMbe set to 3*N*(M + N t No. of upper bound variables)),
and “LIW’ (*) in the description of Card 10 should read instead “M I F - “ . Also the BQ) coefficients on Card 6 and
the A(I,J) coefficients on Card 8 must have integer values.

Block D

Data Input for QP (to be preceded by Block A).

Card 1 Cols 1-10 (I 10)

Cols 11-20 (110)

Cols 21-30 (I 10)

Card 2 Cols 1-5 (15)

C01S6 -10 (15)

M

N

NMQ

ID

JD

Number of constraints

Number of variables

Number of quadratic
variables

The variable associated
with a row of the D matrix.

The variable associated
with the column of the
D matrix.
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Field Format Intemd Name Specification

Card2(contd) COISI1-20 (F1O.O) D(ID,JD) A non-zero value of the
(ID~D) element of D. By
symmetry D~D3D) and
D(JD,ID) have the same vrdue
and hence it is unnecessary
to specify both coefficients.

Cols21 -25 (15) ID

Cols 26-30 (15) JD

Cols31 -40 (F1O.O) ~ID,JD)

Co]s71 -80 (F1O.O) ~ID,JD)

Card 2 is repeated untfl all the non-zero elements of D have’been specified.

Card 3 Cols 1-10 9999999999 Terminates input of the
elements of D.

Cards 4 to 13 areas for Cards 1 to 10 of Block B, with suitable adjustments in the interpretation of Card 10 in
Block B. The vector P of the quadratic function takes the place of c in the LINP input.

Block E

Input to BB (to be preceded by Block A).

Card 1 Cols 1-10 (110)

Cols 11-20 (110)

Cols21 -30 (110)

Cols31 -40 (110)

Cols 41-50 (110)

INT~BJ

PRBB

Number of constraints,

Total number of variables

Number of discrete variables
= – 1: afl the variables have

a stepsize of 1.

= 1: if the value of the objective
function at the optimal integer
solution wdl be an integer.

=@: otherwise

2@ : At an integer solution the
values of the red and slack
variables will be printed
irrespective of the vahre of
PRBB

> 1: Ip~NT is ca~ed at the
initial LP optimum. A message
with the number of iterations
is printed at dl tails.
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Field Format Internal Name Specification

Card 1 (Contd)

Cols51 -60

Cols61 -70

Cols 71-80

Cols 41-50 (Contd) = 1: The f~ed variables and
their values are dso printed
at an integer solution.

(110)

(110)

(110)

If N~D = Oor – 1 the next card is Card 4, othemise Card 2.

Card 2 Cols 1-3 (13)

C01S5 -10 (16)

Cols 11-13 (13)

Cols 15-20 (16)

Cols71 -73 (13)

Cols 75-80 (16)

Card 3 Cols 1-10

ITRBBM

IRBBM

I~ST

J

JDISC(J)

J

JDISC(J)

J

JDISC(J)

9999999999

>2: me v~ues and function

estimates ri~t and left of
the tree are dso printed at
an integer solution.

= 3: The estimates of the rate
of fdl of the function to the
left apd right are printed at
a tafl.
Maximum number of itera-
tions (for BB). If o, it is set
to N*ITRM~

Maximum number of rein-
versions for BB.

= Q: the current run is started
from scratch.

= 1: the calculation is to be
restarted.

Number of a discrete variable

Step size of the Jth discrete
variable.

Terminates input of the
step sizes.

Cards 4-13 areas Block B cards 1-10.
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Field Format Internal Name Specification

Block F

hta Input to PLP (to be preceded by Block A)

Card 1 Cols 1-10 (11o)

Cols 11-20 (110)

Number of parametric
variations.

= ~: the dud and function
row variables are printed
when parametrizing ci, the

original and clack variables
are printed when parametrizing
bi.

=,1 : the duaJ, function row
basic and slack variables
are printed when parametrizing
either bi or c.. .,

J

Card 2 has 3 forms:

i) to parametrise an objective or RHS element between specified limits.

: Col 1 (Al) WE

C01S2-10 (19) Ior J

Character B, if an element
of the RHS is to be varied,
or C if an element of the
objective function is to be
varied.

Number of row, I, whose RHS
element is to be varied, or
column, J, whose objective
function element is to be
varied.

Cols 11-20 (F1O.O) mow Lower bound of the variation.

Cols21 -30 (F1O.O) ~IGH Upper bound of the variation.

ii) to perform a sensitivity analysis on a RHS or an objective function element.

Col 1 (Al) ~E B or C as above.

C01S2 -10 (19) Ior J As above.

Cols 11-20 (F1O.O) B(I) or C(J) me value of the element
in the original LP

Cols21 -30 (F IO.0) B(I) or C(J)
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Field Format Internal Name Specification

(iii) to perform a range arrrdysison M objective function a or MS elements.

Col 1 (Al) WE B or C as above.

Cols 11-20 (110) lor J = –1 dl the WS and objec-
tive function elements
are to be anrdysed.

Card 2 is repeated MP times. me three types of Card 2 maybe in any order.

Cards 3 to 13 areas Cards 1 to 10 of Block B.
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10. APPENDIX 2

CORE AND TIME REQUIREMENTS FOR ICL SYSTEM -4

The amount of core space available naturally limits the size of problem which MPCODE can handle. AUtests on
the TRRL System 4/70 machine have, therefore, been based on a program which will handle problems with up
to 25 constraints and 50 variables. The MPCODE overlay at TRRL has been designed to satisfy minimum core
requirements and disc space.

MPCODEwith a 25 x 50 matrix and tie above-mentioned overlay needs 88k bytes of store buffer space.
The program occupies 52 tracks of disc space.

The following table givesindications of run time (in etu’s) which maybe expected (1 etu = 3% sees).

Option

LINP

BB

MIF

MIF

QP

PLP

Rows

2

2

2

2

16

2

Variables

3

3

3

3

18

3

Bounds

1

1

1

1

—

1

Discrete
Variables

—

3

—

—

—

—

Quadratic
Variables

—

—

—

—

6

—

Parametric
Requests

—

—

—

—

—

5

Iterations

4

19

53

27

13

4

Time (etu’s)

1

1

3

2

1

1
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11. APPENDIX3

JOB CONTROL

11.1 Job control for tie ICL System -4 Multijob O~rating System

Input is from Unit 05, unless the BB restart facflity is being used, so the initial data must be set up in a line
fde with identifier of the form USRNAM: GRPNAM. DSET05 (Snnn Q) where USRNAM is the user’s username.
GRPNAM is a groupname and nnn is an integer between Oand 999. Printer output is to DSET06. If the BB restart
facflity is utflised, then output will dso be to disc, tape or card punch on Unit 07, and input subsequently from the
same device on Unit 08. The job description presented here assumes that DSET07 and DSET08 are disc fdes (the
most efficient configuration).

Ilu
11-
11-

11-
lr-
Ilu
Ilu
11-

Notes: I..

IL

III.

w.

v.

LOGIN - USRNAM, ------

GROUP _ GRPNAM

SCHEDULE - MPCODE, t, nnn/00

CONFG ~ STORE = z, RSP = rsp

FILE _ DSET07, RA, FILNM1, TK, VOLlvn (a)

FILE ~ DSET08, RA, FILNM2, (zqqq@), VOUvn (b)

EXEC _ DSET06

LOGOUT

t is the time in etu’s a~owed for the job, and z is the store allocated. r is the rank,s the stream and
p the priority of the job.

k is the number of tracks allocated to this fde and lvn is the volume number of the disc where these
fdes will be found (using the BB restart facdity).

FILNM1, FILNM2 are the names of these fdes where the BB restart facility is being used. qqq is the
run number of the (BB) job which created tie previous output fde.

If the BB option is not being used, or if the user is sure the BB restart facility will not be employed
by the program, parameters (a) and (b) maybe omitted and notes II and 111ignored.

A standard job description could use 180 units of store and 10 tracks of disc space.
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12. APPENDIX4

LIST OF VARIABLES WHICH MAY OCCUR IN OUTPUT AND INPUT AND A LIST OF
TOLERANCES

(For more detailed explanations, see Reference 3)

~1)

BOUND (J)

C(J)

~ID,JD)

DRWER

INBASE(J)

INREV

INT~BJ

PRBB
WRBBM}

@RPLP

IR

IREST

IRMAX

ISBND

ISEFF(I)

ISTATE

ITR

ITRBBM

ITRMAX

JDISC(J)

M

MARKI

MARKK

MAXA

MAXN

38

The ‘right-hand side, ~, vector.

The vector of upper bounds for each variable. If no bound is present, BO~~J) = – 1.@

The objective, g, vector

The matrix D, of the function L’Z + %&’D&.
Ody rows and columns which have at least one non-zero entry need be stored.

Used when seeking a new variable to reduce the infeasibflity of the NEGW row; it shows
whether the value of the variable in that row is to be driven up (DRWER = 1.0) or down
(DWVER = -1.0)

A vector of elements indicating whether the Jth variable is basic or not. If it is basic, INBASE(J)
contains the element K showing which row of the inverse matrix and which element of XR(K)
is associated with the Jth variable. If it is non basic at its lower bound of zero, INBASE(J) = @,
and if it is non basic at its upper bound, INBASE(J) = – 1.

An indicator as to whether to setup the clack variables from b – AX (INREV = 1) or to alter the
slacks by subtracting a multiple of the slack changes made at ~ach ba~echange (INREV = ~).

See Appendix 1, Block E.

See Appendix 1, Block E.

See Appendix 1, Block F.

The current number of reinversions performed.

See Appendix 1, Block E.

The maximum Mowable number of LP reinversions

The number of upper-bound variables. If ISBND = – 1, all variables have an upper bound
of 1

A vector of elements indicating whether the Ith constraint is effective and explicitly represented
in the inverse (in which case it shows the associated column of the inverse) or not (in which
case ISEFF(I) = 0),

This variable contains information about the conditions on entering and leaving LINP and QP.
For fufl detads see Reference 3.

The current number of LP iterations performed.

See Appendix 1, Block E.

The maximum Mowable number of LP iterations.

Step size of the Jth discrete variable in BB

Number of rows of the basic problem.

Marks the constraint represented explicitly by a clack variable in the basis.

Marks the row of the inverse matrix containing the clack variable indicated by MARKI.

Maximum number of elements allowed in the A matrix,

Maximum number of variables which maybe submitted to the program.



Mm

MORE

MOREPR

MXSIZE

N

NEGINV

NEGROW

NEW

NEwx

MQ

msLK

R

s(l)

SIZE

mPE
now
THIGH 1

X(J)

XBASIS(K)
@rinted as
XBS(K))

XKPos

XR(K)

Y(I)

YAC(J)

YAMINC

YBASIS(L)

YR(L)

Tolerances

Variable

Maximum number of rows which maybe submitted to the program.

See Reference 3 and Appendix 1.

See Appendix 1, Block B.

The maximum size of the inverse matrix.

The number of columns of the problem.

The row of the inverse associated with an infeasible variable.

The row of the constraints matrix with the greatest unfeasibility.

fie row of the inverse or of the A matrix which limits the size of the current basis change.

The new variable to be introduced into the basis.

The number of parametric requests in PLP.

The number of quadratic variables in QP.

me number of slack variables explicitly represented in the bask.

The limit of the entering variable.

The vector of inequality types of the constraints.

Current size of the inverse.

See Appendix 1, Block F.

The vector, ~, of the variables of the primrd problem.

The labels of the rows of the inverse matrix containing the current basic variables.
explicit basic slack variable on the Ith row is shown by N t I in XBASIS(K).

Shows whether the new variable entering the basis is entering positively (XKPOS =
negatively (XKPOS = – 1.0).

The values of the variables listed in XBASIS(K)

Vector of the dual variables.

(= y’A-c’) The updated objective row of the LP calculation.

(= y’ak<k) me element in the updated row of the entering variable (~~).

An

1.0) or

The column labels of the inverse matrix, containing the numbers of the (currently) active
constraints.

The values of the dual variables of the constraints in YBASIS&).

with the values which have been set for the ICM/70 sin~e precision version.

Value

BIG

SMALL

TOL (1)

TOL (2)

TOL (3)

108 This variable is large, and treated as a representation of ‘infinity’.
IO-7 A sma~ value, sufficiently small so that a variable with a value less than it may

be treated as zero without introducing any error.
IO-3 Tests the feasibility of the basic primal variables at their upper and lower

bounds.
IO-3 Tests the feasibihty of the slacks on the ineffective constraints.
IO-3 Tests the optimdity of the dual variables of the effective constraints.
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Variable Value

TOL (4) ~~-3 Tests the optimdity of the objective row values of the non-basic variables

TOL (5) 10-6 Tests whether a pivot should be regarded as zero.

TOL (6) IO-3 Tests with relative error of the primal variables of a solution on the Ith constraint.

TOL (7) IO-3 Tests the relative error of the dual variables of a solution at the Jth variable.

TOL (8) 10-5 Tests the size of a proposed pivot during a reinversion of the inverse (connected
with TOL (5)).

There are two tolerances in MIF:-

TOLIF1 10-2 Tests whether a variable has an integer value or not.

TOLIF2 10-1 Used as a criterion to decide whether the coefficients of a new constraint are
accurate or not.
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ABSTRACT

MPCODE: A versatile linear and quadratic mathematical programming system: A H LAND
S POWELL N J PAULLEY and M R WGAN: Department of tie Environment, TRRL Supplementary
Report SR17UC, Crowthorne, 1974 (Transport & Road Research Laboratory). An extensive Mathem-
aticrd Programming System has been written by A Land and S Powell under SRC funding on CDC 6600
and ICL 1900 computers. TRRL have collaborated with L.S.E. and S.R.C. Atlas Computer bboratory to
develop and test a version of this system in parallel for ICL System 4 and IBM 360 computers. A high
degree of problem-solving robustness and reliabdity has been achieved. Tolerance levels were determined
that allow a substantial reduction in core storage required. Examples of jinear, parametric, interger, dis-
crete and constrained quadratic formulations are given, and the document forms a Users Manual for this
system for both System 4 and IBM 360/370 computers.
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