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MPCODE: A VERSATILE LINEAR AND QUADRATIC MATHEMATICAL
PROGRAMMING SYSTEM

ABSTRACT

An extensive Mathematical Programming System has been written

by A Land and S Powell under SRC funding on CDC 6600 and

ICL 1900 computers. TRRL have collaborated with L.S.E. and S.R.C.
Atlas Computer Laboratory to develop and test a version of this system

in parallel for ICL System 4 and IBM 360 Computers. A high degree of
problem solving robustness and reliability has been achieved. Tolerance
levels were determined that allow a substantial reduction in core storage
required. Examples of linear, parametric, integer, discrete and constrained
quadratic formulations are given and the document forms a Users Manual
for this system, for both System 4 and IBM 360/370 computers.

1. INTRODUCTION

Scientific utility software for the ICL 4/70 system is not plentiful, due to the limited number of such installations.
ICL systems for operational research work are limited to a Transportation Code® and the LP 400 Mathematical
Programming system?. The specialised features of the Transportation Code make it unsuitable for a current TRRL
research program on dynamic models of modal choice, but LP 400 has a number of attractive features.

Substantial effort has been required to make effective use of LP 400; and we have had significant help from
the ICL subsidiary — Dataskil — in bringing LP 400 into use. From the time that the LP 400 had been handed over
to ICL by the contractors who wrote it (Scicon), relatively few UK installations have made full use of the system.
The report writing, input and problem formulation facilities are restricted, due partly to the restrictive environment
provided by the host ICL system softwear, but the actual algorithms are efficient and LP 400 provides considerable
problem solving power. We have carried out a systematic survey of tests on LP 400 under both J and Multijob
operating systems, and have made extensive use of the MPCODE system to detect and diagnose erroneous solutions
produced by LP 400. The linear programming part of LP 400 is now in regular production use for Research Programme
Portfolio analysis within TRRL, and the system is demonstrably useful for linear, mixed integer, parametric and
separable problem formulations. Unfortunately, the structure of LP 400 and its supporting documentation is such
that a substantial knowledge of the mathematical field of convex programming is needed to exploit LP 400
properly. The level of generality at which LP 400 can be used requires a multiple stage process to set up first a
suitably tailored subset of LP 400 for the class of formulation described, and then to apply this to the whole range
of specific problem formulations of this type. This is a very considerable task for occasional users without a sub-
stantial background knowledge of operational research and systems analysis. It should be pointed out that this
approach is common to almost every mathematical programming system, and does allow specific problem form-
ulations to be switched from one such system to another with a minimum of effort.

For research or teaching purposes a less ponderous tool is very desirable, and an appropriate approach is to
set-up a FORTRAN, ALGOL or PL/1 program in a reasonably machine-independent manner and include a quadratic
programming algorithm and other such powerful analytical methods that would not normally form a part of a large
scale LP-oriented systems such as LP 400. One such system had been written and published®by A. H. Land and
S. Powell with SRC support. The published version is in a form directly suitable for the CDC 6600 computer.
We therefore transferred it to the TRRL ICL 4/70, and put it through the necessary series of benchmark
tests to establish reliable problem solving performance. = The CDC 6600 has a 60 bit word, and effectively
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unlimited storage from the programmer’s viewpoint. The ICL System 4 and IBM/360-370 computers both use

32 bit words addressed as 8 bit bytes, and in general (up to the release of the VS series of IBM operating systems)
offer less core storage to the programmer. Parallel development and testing was carried out on the [BM 370 at
SRC Chilton and on the ICL 4/70 at TRRL Crowthorne to produce a reliable system and establish tolerance
values suitable for the IBM/ICL byte/word structures when the usage of double precision storage was cut to a
minimum. The end result of this work was to produce a FORTRAN code which ran equally accurately on 4/70
and 370. The basic system has also been run on ICL 1900 and Univac 1108 machines.

The code written for the CDC 6600 and published in Land and Powell’s book? differs from this 4/70, 370
version only in tolerance values and the use of single precision and double precision declarations for appropriate
variables. For the single precision version of the code we are now satisfied after extensive testing
and parallel running that the tolerance values quoted here ensure robust and accurate problem solving. The
system has already been used in current TRRL research on dynamic models of modal choice and public transport
competition, and in the analysis of turnover capacities of car parks and further applications now in hand.

2. SYSTEM SPECIFICATION

MPCODE is a suite of programs which will perform linear, parametric, integer, discrete and quadratic operations
on mathematical programming formulations. In writing this guide it has been assumed that the user has some
minimal familiarity with mathematical programming ideas, though not necessarily any deep knowledge. No
attempt will be made here to deal with theory in depth; the user is recommended to consult one of the many
excellent textbooks on the subject — for example, Reference 5. Mathematical formulations for these problems
take the general form:-

maximise z(x)

subject to Ax <b

In the linear programming problem z (x) = ¢’ (x), with dual problem

minimise y' b”

>

subject to y'AZc ,y=2o0
In the integer (linear) programming problem, some or all of the variables, x , are also limited to take
integer values. -

In the quadratic programming problem, z (x) = p'x + %x’ Dx

Here A is an (m x n) matrix of coefficients of constraints, b is a (m x 1) vector of the right-hand-sides of the
constraints and ¢ or p are (n x 1) vectors of coefficients of the objective or function row. y is a (m x 1) vector
and x isa (n x 1) vector. D is a (symmetric) matrix of coefficients of the quadratic form of the quadratic
programming objective row. " * " indicates transposition.

MPCODE will solve problems of this class up to a limiting size. The maximum size may be altered to take
advantage of the local core resources (see Appendix 2). The system is central-processor (CPU) dominated with
input and output being limited to card reader and line printer, except when the BB restart facility is being used.
This does restrict the size of problem which may be attacked, but it also makes the program remarkably versatile
and efficient in CPU time, and it may be favourably compared with commercial systems. MPCODE originally
consisted of a number of distinct programs, each of which performed one of the operations mentioned above.
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However, as these programs were essentially modular in form, having a large number of common subroutines, it

was practical to combine these programs into one system to allow the operational method (lincar programming,
integer programming, etc.) to be chosen by a driver routine at run-time. This has been carried out at TRRL. This
system naturally remains modular and appropriate use of overlays reduces the core storage required for the program —
see Aooendix 2. This modular construction is a source of much of the program’s versatilitv.

The original program has been tested principally on the London University CDC 6600. The system employe‘d
at TRRL is the same except that the values ofcertain constants have been altered (after considerable testing) to

take account of the difference in word lengths between the CDC 6600 and the ICL System 4 and IBM machines..
(60 bit words on the CDC 6600, 32 bit on System 4/IBM 360.) It is, therefore, now possible to keep to single
precision variables thus enabling larger problems to be run. The constants that required adjustment were the
tolerances. As Land and Powell state® “one of the critical decisions in designing LP systems is the tolerance to

be used — ‘when is a zero not a zero?’” Tolerances have been found for the 32 bit word machines which are robust
under all known circumstances, and every attempt has been made to establish this for all the different algorithms
available in MPCODE.

The program is based on the ‘reduced inverse matrix’3 version of the Simplex Method. The controlling routine
for this method is a subroutine, DOANLP (see Fig. 2), which issues calls to a number of other subroutines which
perform the algorithmic functions. The linear programming option (LINP) calls DOANLP, seeks — and if possible
obtains — a feasible and subsequently an ‘optimal solution’, checks for accuracy then if necessary reinverts the
reduced matrix and enters DOANLP again to reoptimise. The integer programming option (MIF) requires all
coefficients and solution values to be integer: a version of Gomory’s Method of Integer Forms is used, and the
program also uses DOANLP> amongst other routines. For the discrete programming option (BB), where a subset
(possibly total) of the variables are restricted to alter by specified step sizes, a Branch and Bound algorithm3>
is used once again with DOANLP as the basis. Parametric Linear Programming (PLP) carries out parametric
analysis on the right-hand side (b vector) and objective function (¢ vector) elements, as an extension to the
basic LP. The Quadratic Programming option (QP) employs a variant of Beale’s quadratic programming algorithm?,
and requires a routine DOAQP analagous to DOANLP. For QP all the constraints must be linear in form, variables
may not be constrained to be integer, but the objective function can be a quadratic expression.

The dual solution is obtained from the LP option, though interpretation of the meaning of the dual is, of
course, up to the user (Reference 5). More detailed descriptions of the various options are presented in Section 4,
but for full descriptions see Land and Powell® or a general reference book such as Vajda®.

Major options are:-

Linear Programming (LINP)
Integer Programming (MIF)
Quadratic Programming (QP)
Discrete Programming (BB)

Parametric Linear Programming (PLP)
3. GENERAL OPERATING INSTRUCTIONS

Given that there is a problem which may be expressed in mathematical programming terms, the first decision to
be made is which method of optimisation is to be used — i.e., is it to be LINP, MIF, etc. (see Section 4)? The
user specifies this on data card, read in by the driver routine, by means of a keyword which causes a branch to the
controlling subprogram for the chosen method. The number of problems to be served with separate data for each
run (see below), and optional comments to document the printout are also read in at this stage.



Once the program has selected the chosen method it reads in the data specifying the problem. As matrices
and vectors are packed by the program, only non-zero coefficients need be punched. All the data should be right-
adjusted in the appropriate fields, and should be integer in form with the exception of the elements of the objective
vector (C), the upper bound vector (BOUND), the right-hand-side vector (B) and matrix (A) which may be real and
hence include a decimal point; and the variable TYPE of PLP which is character in format (see Section 4). Some
scaling of the problem may be required due to the implicit restrictions on the size of values which may be read by
the limited field lengths allocated on the input cards. The setting of the tolerances is such that the programs work
best if the problem is scaled to bring all the coefficients in the A-matrix as close to % 1 as can be achieved without
too much trouble. Note also the more stringent scale requirements for BB and the integer requirements for MIF.

It is possible to run more than one problem within a single job. There are two ways of accomplishing this:

(i)  Set the required number of problems (variable NRUN) as input to the driver routine at the beginning of the
run; the program will then return to the driver routine as each separate problem is solved.

(i) If the same method of optimisation is to be used on consecutive problems, the variable MORE, read in at
run-time, may be set to indicate there are more problems requiring the same method which will follow on.
Data for the second and subsequent problems are submitted directly after that for the first, as MORE inhibits
a return to the driver routine.

Naturally both methods may be employed in the same job, but it is important to remember that NRUN
controls the number of branches from the driver program and not necessarily the number of distinct options, which
may be larger than NRUN if the MORE option is also used.

Data input formats and job control statements for the ICL System 4 series machines are specified in
Appendices 1 and 3.

MPCODE traps errors and prints diagnostic messages (generally self-explanatory) for most of the data errors
and abnormal conditions that are likely to occur; the amount of the data input copied out to the printer and the
level of detail in the printout of the solutions are controlled by the user by the appropriate input value of variable
MOREPR (see Appendix 1). These debugging aids are particularly important for mathematical programming where
both problem infeasibility and unboundedness frequently occur. The user can control the maximum number of
iterations and re-inversions allowed. If computer time is more valuable than the accuracy of a solution, partial
(and therefore suboptimal) solutions can be obtained more quickly than an accurate result by restricting the number
of iterations and reinversions.

The data input formats specified in Appendix 1: Blocks B to F are the same as those of Land and Powell>,
This manual therefore serves as a users’ guide to the system as described and listed in Reference 3.

4. SPECIFIC OPERATING INSTRUCTIONS

This section contains detailed guidance in the use of each of the options available in MPCODE. For each
method a complete example is provided. First the formulation, then the data input are specified for each such
example.

The following standard notation will be used throughout.

x or X is the vector of primal variables
or Y is the vector of dual variables

or C is the vector of coefficients of the function row

IS 10 =

or B or RHS is the vector of coefficients of the right-hand-side of the constraints.



A is the matrix of coefficients of the inequalities, so the expression Ax < b is a series of linear inequalities.
The slack variables are the dummy variables added to each inequality constraint to make it an equality constraint

(i-e. the slack in the row Zaijxj < b, is the variable x . ; where Zaijxj tXm+i = b

It is conventional to designate the inequalities of general constraints in maximisation algorithms as ‘less
than-or-equal’. For particular rows these inequalities may of course be ‘equal’ or ‘greater-than-or equal’, in which
case the corresponding dual variables will be free variables for equality constraints and non-positive for ‘greater-
than-or-equal’ constraints

4.1 Linear Programming (LINP)

This program option deals with the ordinary type of LP problem where all variables and their duals take
real values. Such problems have the general form

’

maximise

¢ X
subject to Ax

|

<
=

X

lo

where x is not constrained to be integer but may have upper bounds (i.e., 0 < X; < ;j for some j). The

inequalities (*) may be ‘ ' or ‘=" for particular rows of the series of inequalities.

As an illustration of LINP, the following problem is solved.

maximise Xy + 3x2 + 10x3
subject to 12x; + 5x5 + 30x3 < 120
2X1 + 10X2 + 30X3 < 95

X1>0
X2>0
so that x =[x, ¢=[1]. b= [120
X9 3 95
10
L—x3 -
and A =12 5 30]
2 10 30

BOUND, the bound vector, is

-1 where a BOUND of —1 indicates a
-1 variable is unbounded
42

Data input and solution output are presented in Tables 1 and 6. Solution output is discussed in Section 5.1
For data input format see Appendix 1, Block B.

4.2 Integer Programming (MIF)

There are many types of problem where it is unrealistic for the variables to be non-integer. For example,
problems where the variables refer to people or whole commodities. Integer Programming is designed for such LP
problems, where all variables and coefficients are required to be integer. (For cases where only some of the
variables must be integer see Discrete Programming, Section 4.4.) The method of Integer Forms adds ‘cutting
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Linear programming: example data input




L2

crne LInp

TLLUSTRATIQON RUN

weer

LeP, WITH ACCURACY CHECKS AND REINVERSIONS

MOREPR .o 1
IRMAX = 50
ITRMAX ® S0
M (NOs OF CONSTRAINTS) B 2, % (NO.s OF VARIAB_ES=~REAL, NOT SLACK) ®= 3,
NUMBER OF UPPER BOUKDED VAR]ABLES L] .
!NPUT CARDS FOR THE C ELEMENTS & » o o
4 1,0000C 2 3,0000¢ 3 10,0000 ¢ 0.000)¢C 0 0,0000¢ O
(999999999 000)¢ 0 0,0000¢ 0 0,0000(¢ ¢ 0.000)¢ 0 0.,000)¢ O
INPUT CARDS FOR THE UPPEP BOUNDS ON SINGLE VARIABLES 4, o 4 o
3 2,000)¢ © 0,000( 0 0,0000¢ o 0,600)C 0 0,0000¢C ©
(999999999 oom¢ o 0,0000¢ 0 0,000)¢C 0 0,000)C O 0,0000¢ 0O
INPUT CARDS FOR THE B VECTOR, THE RIGHT=HAND SIDES OF THE CONSTRAINTS , , , «
« 11 120,000 ¢ 21 95,00)¢ 00 0,0C)( o0 0,00)¢ 00 0,000¢ Q0
(9999999999,00)¢ 09 0,0M¢ Q0 0,000¢ 00 0,00Y¢C 00 0,00)¢ 00
INPUT CARDS FOR THE ROWS OF THE A MATRIX 4 4 ¢ ,
{ 0 1,000)¢ 1 12.,900( 2 5,000)0¢ 3 30,000)0( 0 0,000)¢C ¢
« 0 2,000)¢ 4 2,0000(C 2 10,0000¢( 3 30,000)¢C © 0,0000C 0
(99999999¢,000)¢ © 0,000)( 0O 0,000¢ o 0,000)¢C 0 0,000)¢C 0
OBJECTIVE 32,04544100
Joe o o 1 2 3
BOUND VECYOR, o 4 »
»1,0000 «1,0000 2,0000
X VECTORs 4 o o
3,8636 2,7273 2,0000
H Y VECTOR 8 BmAX
- CLTY P (SLACK)
( )
1 0,0364 ¢ 12,0000 $,0000 30,0000 ) Le 120,00 0,0000
( )
H 0,2818 ¢ 220000 10,0000 30,0000 )y LE 95,00 0,0000
( )
C VECTOR. o o
1,0000 3,0000 10,0000
Y'A®ls 4 ¢ o
=0,0000 ~0,6000 “0,6546
coLumi 1 H
YBASIS 2 1
YR 0,2818 0,0364
ROW %8BS XR INVERSE MATRIX
1 2 2,7273 041091 =-0,0182
2 1 3,8636 =0,0455 0,0909
816 0,1000E 99, DRIVER 0.0, INREY 0, IR 0,
1$DONE 0, ISTATE 1 ITR 4y ITRMAX 50,
MARKK Dy MAXA 1000, MAX 258, MAXN S0,
N 3, NEGINY 0y NEGROW 0y NEWX ]
R 3,86364, SI2E 2y SMALL (41000E=006, TOL(1) 0,1000E~02,
TOL{4) O0,1000E«02, TOL(S) ©,1000E-05, TOL(6) O,1000E=02, TOL(7) C,1000Ee02,
YAMING w0,00100
L8EFF
2 1
INBASE
2 1 =1

4 SIMPLEX JTERATIONS,

OPTJNHUM

TABLE 6

G,0000C ©
0,000)¢ 0
0,000)¢ 0
0,0000¢ 0
0400)¢ 00
0400)¢ 00
6,000)¢ 0
0,000)¢ 0
0,900)¢ 0
LRHAX 50,
M 2,
MORE 0,
NEWY 2,
TOL(2) 9,1000E=02,
TOL(8) 0,1000€~0é4,

0,009 ¢

0,000)¢

0,000 (
0,000)(

0,00)¢(
04003 ¢

0,000)¢
0,000)¢
0,000) ¢

18BND
MARK]
MXSI2E
NUMS LK
TOL(3)
XKPOS

0 0,000)
0 0,000
1] 0,000
0 0,000
00 0,00)
00 0,00}
0 0,000
0 0,000}
0 04000

1

0

50

0

6,1000E=02
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planes’ to the original problem to find the optimum integer solution. This algorithm is appropriate only for problems
with very small (integer) coefficients in the A matrix. It may fail to reach an integer solution within the maximum
iteration count or because the program can no longer find satisfactory additional cutting planes. If it fails, the branch
and bound algorithm should be used, as this will almost certainly at least produce a feasible integer answer.

MIF requires the appropriate input data (i.e., A, B and BOUND) in integer form. Failure to specify integer
coefficients in the data input produces an error message and program termination at the data input stage.

The integer programming problem used to illustrate the MIF option has the same form as that used for LINP
with the additional constraint that integer solution values are required. For data input format see Appendix 1:
Block C, and Tables 2 and 7.show data input and solution output to the example problem. For a discussion of
the output produced see Section 5.

4.3 Quadratic Programming (QP)

The QP option is an appropriate algorithm when both linear (real) constraints and a quadratic objective
function are required, for instance when the maximand contains products of two problem variables, such as price
times quantity. It has also been used in econometric problems to obtain regression coefficients that are subject
to linear constraints. The problems take the form:

maximise: p'x + %x'Dx
subject to the usual constraints
Ax < b

V/

V
10

2.9

and x may have upper bounds p is the vector of coefficients of the linear part of the objective function, and D
is the matrix of the quadratic form.

MPCODE uses the basic LP algorithm to solve this type of problem as at least a local optimum may be found
if the problem

maximise: g’ x
sibjectto:  Ax <X b
X 20
is maximised at the point x ; where = p + X'y D. This optimum will also be a global optimum if D is

negative definite or negative semi-definite, or more generally if the objective function is concave within the
feasible region. For instance, a quadratic function such as an hyperbola will yield a global optimum, so long
as the saddle-point of the function lies outside the feasible region.

The algorithm is not affected by the condition of the D matrix; even a singular matrix D is acceptable.

‘As an illustration consider the problem below. It would, of course, be more efficient to divide the rows by
103 before solving. However, the large coefficients are retained to provide a test for the tolerance settings.

Maximise
- 853x1 + 994x2 —879X3 + 991x4 - 907x5 + 989x6 -~ 936x7
+ 987x8 — 961x9 + 984x10 - 987x11 + 982x12

+ IX2X8 + Ixsxpq + Ixgxy4 + Ixy1x17



ndur ejep sjdwexa :Supwwerdoid 1a8ojuf

[ACQt:LAR
L | IR AL LR T TT LI LR LI LI UL L LR LI LR LR T LR ¥

| [ [ | [ | 1] [ [ 1§ I | I | . [ | | N | ] | t
LR 1T 17 IR SRR LR | SR BRI LU L BRI LR T 13 T 1T 17 111 IBR BRI R |
_P__ J | 11 L1 1 1 I | [ | I | [ | 11| ) I T | 1 1 |t ] )¢t L1 11 | 1|t 1 ] l
T 17 LR 17T T 17171 711 LI T T 17 T SRR T 1T 17T L R T T7 LB LBRELERI T I
| FEE W | 411 [ | I .| T . R 3 1 3! J I | 1.1 13 [ | 411 1 11t ] ]
LB 1717 LIS T T T 1T LB T 7177 1T LI rri T 17T T 1T 71 1 11 T 1 1 1T 7T T T
VS | M W | 11 J N Y [ I\ FEE I [ | | - 1] 1 11 114 ) | S T I | || |

IR LI BRI LN I 11 LR BRI LB LR S LI L LI T 1171 rrri T T LI N B | T 1 1 T
¢ 11 11 [ T . 1 111 I 11 1 -1 1 ¢ § I | L1 1 L1 3] L1 ] 1 1 J . i ] ]
LR i L | LR L TTT7 LI R L LRI LB LI LA L S S | T 11Tt LR R T LI LI G A L T T
1 11 [ N i1 1 | [ 1111 [ . T | | I | [ | [ | || | || L1 | }
1 LI B L V1T T L] T 17171 Tt 1 T 11 T LI L T 17 T T 1 1 11 | B +
Il ] 1 Il | i [ | [ S I | [ N | oy [ ] (. [ | [ .| |
_“““ “WwA. _ﬂ_w _.ﬂn_ _““w “___ LR LER BRI LI 7 LI I L T 11 LN L LI I | 1 1T ¥

1} [ | [ | F I | [ | I U WO Y O S I [ | [ N | [ | [ | (I I | [ | -1 |

.ﬂ-¢ T 11 LI B L B 111 T 1 11 LB LRI 17 171 LI BRI L LR T 11 1T T T ___“ “
J 1 14 R I | [ | 111 I T 1 B T | I | | T . 1 - F I ¥ I S | I | I 1t |
T T T 17 LB L i1 LR LR LA L L 1T 17 LI B | 1 T LB Tt 1 1 1 T T
U | PR W WY 41 T | I I | O S | .| I | I T | [ - | 1413 J . _~__S____
T 11 L B | LB L L T 11 LELARLL LA R O § LI | LI I | LI S | LA N | T 11 LI T O T

114 | I I ) I O | [ | Pyl [ T | | | | [ [ | 11 [ | @m_o_m_mm_

| S S S § T UL T LI | L LA e g | LIS B T LA R I | "L —T_T11 T 17 L B ™11 T
pe € D 1 z z [ T

[ | JU B | I 411 | 41l [ I [ T | J T | S [ | | l

T 11 LI S I LEBLER I LI B | | LR T T ____S_m___ __m__m___q __N_. N_____ ____~ 11 T

I U | S 1 [ [ T [ I | P | T W | [ | | | O | [ | [ | I 1 3] —____ ]

i 11 1 LI B L 1 1T T 111 LR 1 T LIRS Tt 1 LR 111 LI LI I | m_o_m_m_mm_

[ 1 [ T O [ | [ | [ Ll [ | Pt [ | 114 T [ L1

1 LR L | R R —r T Ty r1ri T 17 |BLEREL LI L | LIRS i T T 1 m_m_ LR _~_N~ L S-N;._

S S U WS S W G A | [ | [} Il S | | F I I | | 1 41 [ | j I | J | Lol | | 1
1T Tt 11 L L T T T 711 L —r 11 LI B e | 11 1 LB LI IR B L0 L | 1 LI R | m_m_m_ qm
| 41t 1l 1114 J S | [ 414 T | . [ | ) | | S | 41 |- 1 J U ___m_ 6
T T LI B | L | 11 T 7 1T LALASRLE T 1T LONLELII LSN R B LIS L T T _-A_N.___

1 } J I T .} 11 1 F U | T I | | I S | 11 11} . | ) I ) S T | | | | [ | I 1}
H+-+r+++tt+—+—+trt+-+—++r++-t+-+— -+ttt 1ttt d_ﬁ_m_m_adm*mm“m
R D G N TN T T U T O S O L1 1 TN O T O T O Y O O I I I { I T T SO OO I S O I W [ I T T O O I R s
L S | T 1T LR LR LR 1T LI B LI LI B LB LR S;_ LI T m_ UL __N—- ~__~q

1 I Y | )13 111 .| | | 11 11 | | 111 [ . . | P Rl 1 ¢
UL 117 ISR _ﬁd_-Q_m___ —_-d—s_m___ LR LR S____ ___ﬂ—__q_ LI m____ LR L Nq___

1 t1 1111 111 111 11 4.1 [ . | 1111 | || | [ | JE | 111 } 1 1] | | 1
Tt t LANE BN A LI LI LB T 11 LI L L LI A B | LRI LI | 11 LI 111 LR LR T T

111 Il 1 11 [ 1411 | 11 1] 4111 [ | 1] 1 ]l | 1

¢m4—.r .__“ “*“. L ] LB LI R LI AL 111 1SR LR LI 1 1 1 ___ﬁ “““u_ “mw“ “

ok ok k& ok ¥k K[k ko k k& H ok ok k x k|k & & ok Flk k x * k| %k x x x k[k x *x *x x|% * * x % -
IRN SN SN AN AN AN U ATE SR AR 0 s Tt T T T B T Sl Tl o T T T o Tl o o Yol T o i Tl S i ol S ha ul f Bl B Rl B
1t LB N S LI LI L B | LI LONLER BB LI S | LI BRI L2 I § T 1t LILOR R S | LI | S |

V. NA1d0d|d QNV[I, V

1t} | I | 4.1 11 (SR 141 11 [ | 111 1111 ;I | | | I | A I | | S vl | | S | J I
T 1T v 1 17T LI L L LI LA B T LELERL LB LER L | T LR LI LI LI LI L LI T 1 3
W | | 41t JJJ&F& J#—&bu_.&.n_u_#_l*.JJJ&*.&.;LJ» b Tl s Sl s Bl bt T T T T | —Jﬁ_*#_&_ﬁ_ﬁ_» &_ﬁ_uhﬁ_* J».Jﬁ.uﬁ
LI T T | LARLE | LI L | UL T 1 | L LI I I LRI LA T rt LR LA L LR LENE B | __d_—
l
_dhmnhwmq ~_omm~am.~nuwomohwmqmn—omo»wﬂqn-om gis|yie{zit|o]sf el c]ofsf2[elz]Lio]e]efcfo[s[7]clz tfol6l8lclols
LiTATAATAYARS LiLIL]9 919]9/3{38|9 91G16{6}SIG|G Sisjsivlvll vy viviyivyriclejeleielefejeleleizizieizizizigizdzhzlan vt bilpdiliht




L T T T T R R L L L LT T arurrpu
reuw A LAND PROBLEM A
LA R T T R R R TN LT Ty T e rue

METHOD OF INTEGER FORMS

[RMAX = 20
1TRMAX = 100

M (NOu« OF CONSTRAINTS) = 2y N (NOy OF VARJABLESm=REAL, NOT SLACK) = 3.
NUMBER OF UPPER BOUNDED VARIABLES ® Te
INPUT CARDS FOR THE C ELEMENTS 4 o o o
« 1 $000)¢ 2 3,0000¢ 3 10,0000¢ o 0,0000¢ 0 04000)¢ © 0,000)¢C 0 0,000)( ©
(999999999,000)¢ 0 0,0000¢ 0 0,000¢ o 0,000)¢ o 0,0000¢ 0 0,0000¢ 0 0,000)¢ 0
INPUT CARDS FOR THE UPPER BOUNDS ON SINGLE VARIABLES o & o
4 2,000)¢ © 0,000)¢ © 0,0000¢ o 0,000) 0 0,000)¢ 0 0,000)¢ 0 0,000)¢ 0
(999999999,000)(¢ 0 0,0000¢ 0 0,0000¢ o 0,0000¢ 0 0,0000¢ 0O 0,000)¢ o0 0,000)¢C 0
INPUT CARDS POR THE 8 VECTOR, THE RIGHTwHAND SIDES OF THE CONSTRAINTS , , , ,
« N 120,000¢ 21 95,000( 00 0,00)¢ 00 0,00)¢( 00 0,00)¢ 00 0,00)¢ 00 0,00)¢ 00
(9999999999,00)¢( 00 0,003 00 0,00)¢ 00 0,00)¢ 00 0,000¢ 00 0,00)¢ 00 0,00)(C 00
INPUT CARDS FOR THE ROWS OF THE A MATRIX o« o ¢ o /
¢« 0 1,000)¢ 1 12,0000¢ 2 5,0000¢ 3 30,000)¢ 0. 0,000)¢ 0 0,000)( 0 0,000)(¢ 0
¢ 0 24000)¢ 1 2,0000¢ 2 10,0000¢ 3 30,000)¢ O 0,0000( © 0,000)¢ 0 0,000)¢ o
(999999999,000)¢ © 0,000)¢ 0 0,0000¢ © 0,000)¢C © 0,0000C © 0,000)¢C 0 0,000)¢ O
OBJECTIVE 31,00006100
Vo o 0 1 2 3
BOUND VECTOR, 4 4 o
»1,0000 =1,0000 2,0000
X VECTORy 4 o &
20000 3,0000 2,0000
H Y VECTOR B BwAX
- - (SLACK)
( )
1 0,0000 ¢ 1240000 $,0000 30,0000 ) Le 120,00 21,0002
¢ )
H 04,0000 ¢ 2,0000 10,0000 30,0000 ) LE 95,00 04,9999
( )
3 0,0000 ¢ 2,0000 8,0000 25,0000 3 LE 78,00 040000
4 ) :
4 0,2500 ¢ 440000 12,0000 40,0000 ) (g 124,00 0,0000
4 )

o

VECTORy » o

1.0000 3,0000 10,0000
Y'ARCy & 4 o
=0,0000 »0,0001 0,0000
18EFF
00 2
INBASE
2 1=

27 SIMPLEX ITERATIONS,
INTEGER PROGRAM OPTIMUM,

TABLE 7

10

0,000)
0,000)

0,000)
0,000)

0,00)
0,00)

0,000)
0,000)
0,000)



subject to

1000x; + 1000x, + 1000x; = 7000
1000x 4 + 1000x5 + 1000x6 = 7000
1000x, + 1000xg + 1000xg = 7000
1000x;q, + 1000x;; + 1000x;, = 7000
1000x;3 + 1000x;, + 1000x;,s = 7000 and x >o-
1000x;s + 1000x;; + 1000x;g = 7000
2000x + 3000x2 = 14000
2000x4 + 3000xs = 14000
1000x7 + 5000x8 = 14000
2000x,3 + 3000x;4 = 14000
2000x; + 3000x,; © = 14000

Data input format is specified in Appendix 1, Block D. Illustrations of data input and solution output-are found
in Tables 3 and 8; the output is discussed in Section 5.

44 Discrete Programming (BB)

BB is a Branch and Bound algorithm designed to solve problems which may be expressed in the usual LP
form

"X

Maximise c
Subject to Ax

s

<
=

10

and x may have upper bounds. There is, however, the additional requirement that some or all of the com-
ponents of x take discrete values. Different step sizes may be allocated to different variables, but each discrete
variable may have only one step size.

A common application of discrete programming is mixed integer programming where some or all of the
variables are constrained to take integer values. This is equivalent to saying that some or all of the variables take
discrete integer values with a step size of one.

As ‘Branch and Bound’ is a tree search algorithm® a feasible solution can be obtained by ending the run
before the search is complete. Very frequently, the optimum solution is obtained (and printed) early in the search,
but a very large amount of computing is required to prove that no better solution exists. This characteristic of the
method is useful if computer time is limited; hence BB is provided with a restart facility. On the first run of a
problem, the choice of a value for ITRBBM (the maximum number of iterations) is often little better than a
guess. The computation will finish when the number of iterations, ITRBB, is greater than ITRBBM, and this may
well occur before the Branch-and-Bound tree has been completely explored. The restart facility allows the compu-
tation to be started in a later run from the point at which the previous run ended.

If a solution is not found within the maximum number of iterations, a representation of the tree is saved
on tape, disc, or card punch on logical unit 07. A description of the saved part of the tree is also printed out. In
any subsequent computer run this data is read in at the beginning from tape, disc or card punch on logical unit 08,
and a description of this data is printed. Apart from the printing on input and output there is no difference in the
course of the computation between invoking the restart procedure and ignoring it.

11
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TABLE 3

Quadratic programming: example data input



v
vhow OP  EXAMPLE RUN
roue
QUADRATIC PROGRAMMING
MaE 12, N® 18, NUMBER OF VARJABLES WITH NON«LINEAR COEFFICIENTS ® 6
CARD INPUT FOR THE NONmLINEAR COEFPICIENTS OF THE FUNCTIONs 4

1 ]
A N TBYC 1,000 C SIC A€ 1,003 € BYC 1AC 1,000 ¢ 11C 1M 1,00
$ooonn)t9o9901s 00000 (O3 03¢ 0s003 ( O O3( 05000 ¢ 0 O 0,00
IRMAX @ $0
JTRMAX @ 50
M (NO, OF CONBTRAINTS) w 12¢ N (NO, Of VARJABLESewREAL, NOT SLACK) ® 18,
NUMBER OF UPPER BOUNDED VARIABLES a 0,
INPUT CARDS FOR THE € ELEMENTS , 4 o o
C 1 eBS3.0005( 2  994,0000( 3 "wB79,000)( & 991,0000( 5 w907,0000¢ 6 989,000)¢ 7 =936,000)( & 987,000
¢ 9 e981.000)¢ 10  98490003( 11 wPB?.000)( 12  982,0003¢ 0  0,0000( ©  0,0000( 0  0,0000¢ 0 0,000
(9999999994000)¢ O  0.0000¢ ©  0,0000¢ 0  0s000)¢ 0  0,0000¢ O  0,0003¢ 0  0,0009( 0 0,000
INPUT CARDS FOR THE B VECTOR, THE RIGHTsHAND SIDES OF THE CONSTRAINTS , 4 4 o
¢ 10 7000,00)( 20 7000,00)( 30 7000,00)( &0 7000,000¢ 50 7000,00)( 60 7000,00)( 70 16000,00)( 80 16000,00)
¢ 90 14000.003¢ 100 14000500)¢ 150 14000,00)( 120 140005003 ¢ 00  0,00¢ 00  0,000¢ 00  04000( 00  0400)
(9999999999,00)¢( 00 0,00)¢ 00 0,00)¢ 00 0,00)¢ 00 0,00)¢( 00 0,00)¢C 00 0,003¢ 00 0,00)
INPUT CARDS FOR THE ROWS OF THE A MATRIX 4 o & »
0 1,000)C 1 1000,0000( 2 1000,000)¢ '3 1000,000}( 0 0,0000C 0 040003¢ O  0,000( 0  04000)
¢ 0 200005( & 1000.000)¢ § 1000.000)( 6 10005000)¢ 0  0,0000¢ O  0,0003¢ ©  0,000( 0 04000
¢ 0 30003 7 1000,0000( B 1000,000)¢ 9§ 1000,000)( 0© 0,000)( 0  040003¢ O 0,000 0 0,000
£ 0 4.0005( 10 1000.0003¢ 11 1000,000)¢ 12 1000,0005¢ 0  0,0003¢ 0  0,000¢ 0  0,0000¢ 0  0,000)
¢ 0 S2000)( 13 100000001 ¢ 14 100050000 18 1000s000)¢ 0  04000)¢ 0  040003¢ ©  0,0000¢ 0 0,000
¢ 0 67000)( 16 100050003 17 1000,000)¢ 18 100050005¢ O  040000¢ 0  0,0003¢ O  0,0000¢ O 0,000
¢ 0 7.000)¢ 1 2000.0003¢ 2 3000,000)¢ O 010005¢ ©0  0,0003¢ O  0,0003¢ 0  0,0005¢ 0 0,000
¢ 0 81000)( & 200050003¢ § 3000,0003¢ O 000003¢ ©  0,000)¢ ©  0,000¢( O  04000)¢ O 0,000
¢ 0 9.000)( 7 100040003( 8 3000.000)( © 0.0005¢ 0  0,0000¢ O  0,0000¢ O  0,0000¢ 0 0,000
¢ 0 1010005¢ 10 2000.0003( 1 300050003¢ 0  03000)¢ O  0.000}¢ O  0.000)¢ O  0,0000¢ 0  ©,000)
€ 0 19.000)¢ 13 2000.0003¢ 14 3000.000)¢ 0  0,0003¢ O  0,0003¢( O  0,0003¢ 0  0,0000¢ 0  0,000)
€ 0 12.000)¢ 16 2000,000)¢ 17 3000.000)( ©0  03000)( O  0,0000¢ O  0,0000¢ 0  0,0000( 0  0,000)
(9999999990000 0 . 0,0000¢ ©  0,000)¢ o  0.000( 0 01000)¢ O 0.0003( O  0,0003¢ O 0,000
P VECTOR » ¢ & &
1 2 3 4 s s 7 8 9 10 11 172
o853,00 994,00 879,00 991,00 w907,00 989,00 936,00 987,00 w961,00 984,00 987,00 982,00
13 14 15 16 17 18
0,00 0400 0400 0,00 0400 0,00
THE D MATRIX OF NONwLINEAR COEFFICIENTS, » o o
COLUMN 1 2 3 ‘ 5 6

ROV VARIABLE 2 8 s 1 1% 17

1 H 0,0000 1,0000 0,0000 0,0000 0,0000 0,0000

2 8 10000  0,0000 090000  0,0000 140000  0,0000

3 s 010000 0,0000  0,0000  1,0000  0,0000  0,0000

T 050000  0,0000  1.,0000  0,0000 040000  1,0000

s 14 010000 1,0000  0.0000  0,0000  0,0000 10,0000

T 040000 050000  0,0000  1,0000  0,0000  0,0000

IN THE FOLLOWING OUTPUT, THE ¢ VECTOR GONTAINS THE PARTIAL DERIVATIVES OF THE QUADRATIC FUNCTION, THERE MAY 8¢
MORE CONSTRAINTS PRESENT THAN THE M SPECIFIED ORJGINALLY, BUT THEY HAVE ZERO DUAL VALUES,
ALL VARIABLES HAVE BEEN ASSUMED YO HAVE AN UPPER BQUND OF 10E10 UNLESS OTHERWISE SPECIFIED,

TABLE 8
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SINCE N EXCEEDS 7, AN ABBREVIATED FORM OF PRINTING FOLLOWS
THE BIGNC(T) VlCTOi INDICATES THE S$IGN OF THE IwTH CONSTRAINT, O FOR EG, 9 FOR LE; w1 POR GE,

NONwZERO ELEMENTS OF THE A MATRIX, FOLLOWED BY THEIR COLUMN LABE(S,ess

1 2 3 4 5 6 ? 8 9 10
1000.002 1ooo.oog 1000.002 1000,000 1000.00g 1000.002 1000,003 1000.002 1000.003 1000.028 1000,0 1000,0
4

_,.O -
A -

oM sO-a
®Oor wON

13 164 15 16 17 18 19 20 2 a2 23
1000,000 1000,000 1000,000 1000,000 1000,000 1000,000 2000,000 $000,000 2000,000 3000,000 9000,000 $000,0
13 14 15 16 17 18 1 H 4 H ?

25 26 27 28 29 30
2000,000 3000,000 2000,000 3000,000 2000,000 3000,000 0,0
10 11 13 14 16 1?

THE FOLLOWING YECTORS SHOW THE STARTING POINTS OF THE SUCCESSIVE ROWS OF A IN THE ABOVE LIST OF THE NONoZERO ELEMENTS,!,,

1 2 3 4 S [ ? 8 g 10 N 12 13
1 4 710 13 16 19 23 25 21 ¥ W

DBJECTIVE 15166,19500000
[ 1 2 3 o H 6 ? 8
¢ VECTOR =853,0 994,8 wB?79,0 991,0 =907,0 989,0 ;9!6.0 996,.3
BOUND VECTOR w#wewwwag #dRedvadd 4ovtedddd Shondonad Sodneddhg Qetevttod sdvstader wovtheted

X VECTOR 0,0000 46667 243333 740000 0,0000 40,0000 0,0000 248000

YtAuC  1224,53 0,00 0,00 0,00 1899,00 =0,00 366047 «0,00
9 10 1 12 13 16 15 16 17 18
»961,0 984,0 w982,3 982,0 0,0 2,8 0,0 0,0 0,0 0,0

CORNAINESD CURORPIIT FORANGIIE YREERRUNT GARREPNED SRV NENARY CERRNNRED SRARORG R GNP PEde Gadurteed

64,2000 7.0000 0,0000 0,0000 0,0000 426667 243333 0,0000 46667 243333

0,00 0,00 1967,33 0,00 1,87 0,00 0,00 0,00 0,00 0,00
1 1 H 3 o H 6 ? 8
B VECTOR 7000,0 7000,0 7000,0 7000,0 7000,0 7000,0 16000,0 14000,0
8IGN 0, 04 0, 0, 0, 0, 04 0o

Y VECTOR  =0,8790 0,9890 =0,9610 0,9820 0,0000 0,0000 0,62%% 0,0010
BwAX 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 60,0000 0,0000

9 10 11 12 13
14000,0 14000,0 14000,0 16000,0 982,0
0, 04 0y 0, 1.

0,391% 0,0010 0,0009 0,0000 0,0000
0,0000 0,0000 0,0000 0,0000 982,0000

1SEFP
1119 812 910 ? 2 3 4 3 6 0
INBABE
01 7 2 011 0 3 8 4 012 0 35 9 0 610

13 SIMPLEX ITERATIONS,
GUADRATIC PROGRAM OPTIMUM,

TABLE 8 (continued)
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The restart facility is employed, and an attempt will be made to write to logical unit 07 if the problem
has not been solved and

ITRBBM — ITRBB < MNOW

where: MNOW is thé number of constraints
ITRBBM is the maximum number of BB iterations

ITRBB is the current number of BB iterations

Note:  An attempt will be made to write to unit 07 if these conditions are satisfied.whether or not provision
has been made for output to.unit 07. If no provision has been made and the restart facility is invoked,
+ the program will fail. : :

The BB restart facility included in MPCODE uses subroutines with unformatted input/output for the saved
- data items. This facility is, therefore, only appropriate in MPCODE for use with disc or tape units allocated to
logic units 07 and 08. Users wishing to use a card punch on units 07 and 08 will need formatted read and write
" statements necessitating minor changes in code. For details of this variation of the code, the alterations required,
and a full description of the relevant sub-routines see Reference 3, Chapter 5.

To demonstrate the use of the BB option consider the following problem

Maximise 2%y 3x2 + 10x3
Subjectto  24x; + S5xy + 30x3=>
4x; +10xy + 30x3> 950

and x1>0
X2>0
0 <x3 < 20

with step sizes of 5 for x;, 10 for x; and x5.

BB is particularly sensitive to the requirement that A coefficients should be kept within a range, since there
is a risk of spurious infeasibility occurring and hence large parts of the tree not being examined. The A matrix
coefficients for BB should be kept within * 0.001 and #+ 10.0 particularly for large problems. Note that this may
necessitate setting a large step size for some variables.

Data input format for BB is described in Block E, Appendix 1. Illustrations of data input and solution out-
put appear in Tables 4 and 9; the output is discussed in Para. 5.

4.5 Parametric Linear Programming (PLP)

This option allows the user to vary various elements of the problem after an initial optimal LP solution has
been found and to discover how this optimal solution changes under these variations. Parametric programming is
a form of post-optimal analysis which is a very important tool to the LP user. It allows him to examine the stability
of a solution when certain parts of the data are varied without having to re-run the complete analysis: it is, therefore,
possible to discover a great deal about the nature of the solution and the problem itself in a single run.

Parametric programming is particularly useful if solutions are required to a problem which has a range of
values for RHS ‘or objective function elements. There are many formulations which require this type of approach.
The algorithm is designed to vary only single elements in the RHS and objective function, but a reformulation of
the problem (see 3) enables the whole RHS or objective function to be varied.
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TABLE 4

Discrete programming (Branch and Bound): example data input




Thww

wwn BRANCH AnD BOUND ITLLUSTRATION

owr

BRANCH AND BOUND

M (NO, OF CONSTRAINTS) = 2y 8 (NOy OF VARJABLES) = 3
3 OF THE VARIABLES ARE TC TAKE OISCRETE VALUES,

IRMAX = 50

ITRMAX = 25

M (Nue OF CONSTRAINTS) = 21 N (NO, OF VARJABLES»=REAL, NOT SLACK) ® 3,
NUMBER OF UPPER BOUNDED YARIABLES = 1

INPUT CARDS FOR THE € ELEMENTS o o o

¢ 1 2,000 ¢ 2 30000¢ 3 10,0000C o 0,000)(C 0 0,000)¢C 0
(999999999,000)¢ 0 0,00M¢ 0 0,000)¢ o G.,000)¢C 0O 0,000)¢C 0
INPUT CARDS FOR THE UPPER BOUNDS OK SINGLE VARIABLES o & + «

( 20,000)¢ © 04006)¢C O 0,0000¢ =« 0,000} 3 0,000)C O
(999999999,000)¢ © de00MC 0 0,0000¢ ¢ 9,000)¢ 90 04000)¢ 0
INPUT CARDS FUR THE B VECTOR, THE RIGHTwHAND SIDES OF THE CONSTRAINTS » 4 o o

¢ 11 1200,00)( 21 950,00)¢ 00 0,0M¢ 00 0.90)C 00 0,00)¢ 07
(9999999999,00)( 00 0,00 ¢ 00 0.0M¢ 00 0,003¢ 00 0,00)( o0
INPUT CARDS FOR THE ROWS OF THE A NATRIX o o« s o

¢ 0 1,00m¢ 1 24,0000 C 2 5,000)¢ 3 30,0000 C 0 0,000)¢C C
( 0 2,0000¢ 1 4e0000¢C 2 10,0000¢ 3 30,000¢ O 0,0000¢C 0
(999999999,000)¢ © G,000¢ 9 0,000)¢C ¢ 0,208)¢C 0 0.0000¢ 9

TABLE 9

0400)¢
0e002¢

0,000)¢
6,000)¢
0,090) ¢

oo

co

00
00

oo

0,000)¢

0,000)¢

0,000 ¢
0,000)¢

0,000 ¢
0,000 ¢
0,000)¢

oo

oo

00
00

coo

0,000)
0,000)

0,000)
0,000)

0,00)
0,00)

0,000)
0,000}
0,000)
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THE LP OPTIMUL, WITh FUNCTION VALUE 325,4543500, REACHED AT ITERATIOH 4y 1S AS FOLLCWS.,e
19,3181760 27,2727200 20,0000000
0BJECTIVE 320,45435000
Ji e 0 1 2 3

BOUND VECTOR, o o »
1,000 “1,20%0 20,5000

X VECTORs 4 o o
19,3182 2742727 20,0600

1 Y VECTOR 8 BmwiX
- - {SLACK)
( )
1 0,0364 ¢ 26440000 S.C00C 30,0000 ) (e 1270,00 0,0000
4 )
H 0,2818 ¢ 4a0000 1040000 30,0000 ) L& 950,00 0,0000
¢ )
C VECTORs o » o
2,0000 3,0000 10,0000

Y'A=Co 0w
0.0000 «0,0000 w0,4545

1SEFF
P
INBASE
2 1 =t
4 SIMPLEX ITERATIONS,
SOLUTION SATISFY|NG DISCRETE CONSTRAINTS, WO, 1, WITH FUMCTION VALUE, 309,99976 AT ITERATION 7 ITI11}
1040000000 30,0000000 20,00600000
THE VALUES OF THE SLACK VARIABLES AREceas
209,9992100 9.,9994946

THE FIXED VARIABLES AREa.,,
2 1

3
FIXED AT VALUES,,,
30, 20, 10,

INFEASIBLE TAIL AT ITR, 10
THE FIXED VARIABLES AREq,,

2 3
FIXED AT VALUES,.,,
4G, 20,

A TAIL WITH FUNCTION AT LEAST AS LCV AS THE BEST DISCRETE SOLUTION SO FAR, AT ITR, 12
WITH FUNCTION  304,16650 AND FIAED VARJABLES,,,

2 3
PIXED AT VALUES, .
50, 10,

A TAIL WITH FUNCTION AT LEAST AS LOW AS THE BEST DJSCRETE SQLUTIOM SO FAR, AT TR, 14
WITH FUNCTION  305,00000 AND FIXED VARJABLES,,,
3

2
FIXED AT VALUES,,.
60, 10,

INFEASIBLE TAlL AT [TR. 16.
THE FIXED VARIABLES AREsqs

2 3
FIXED AT VALUES,,.
70, 10,

A TAIL WITH FUKCTION AT LEAST AS LCW AS YHE BEST DISCRETE SOLUTJON SO FAR, AT 1TR, 18
WITH PUNCTION 306466650 AKD FIXED VARIABLES.,,

H 3
BIXED AT VALUES,.,
80, 0,

A TAIL WITH FUNCTION AT LEAST AS LOW AS THE BEST DISCRETE SCLUTION SO FAR, AT ITR, 19
WITH FUNCTION 295,00000 AND FIXED VARJABLES,,.

2
FIXED AT VALUES.,.
90,

ALL BRANCHES OF THE TREE HAVE BEEN EXPLORED, AT ITERATION 19, AND THE OPTIMUM DJSCRETE SOQLUTION IS NO,

TABLE 9 (continued)

18



The first part of the PLP algorithm performs an ordinary LP optimisation (as in LINP) while the second

part carries out the parametric variations on the optimal solution so obtained if indeed there is one to be found.
There are three types of parametric variations available with PLP:

@

(i)

(iii)

Variation of an element or elements of the RHS, (13), within specified limits, or variation of an element
or elements of the objective function, (c), between specified limits. Solutions (if any) are found for the
problem.

Maximise ¢ ‘x such that Ax<X b where

x= 0

k

the jth component of ¢ varies such that < ¢ <
ShsSy

the ith component of b varies such that s; < b;

Perform sensitivity analyses on a RHS or an objective element. Thus a component of b or ¢ isvaried to
find the range of values of the specified element of borc within which the initial LP solution remains

‘ feasxble and optimal. .

Perform a range analysis on all RHS or objective elements, with less printing.

The type of parametrisation is controlled by TYPE. TYPE takes the value “B” for RHS parametrisation

and “C” for parametrisation of the objective function. For complete data input formats see Block F of Appendix 1.
Mlustrations of data input and solution output appear in Tables 5 and 10; the output is discussed in Section 5.

We shall now extend the problem posed in 2(i) for LINP with the followmg addmonal data to illustrate the

case of PLP:-
Veetor Element Hovationsngs  vatation mnge
RHS b 50 200
RHS b, 95 150
Objective function 1 -1 1
Objective function ¢y 1 5
Objective function c3 10 20

5. DISCUSSION OF SOLUTION OUTPUT FORMAT OF THE SOLUTIONS OBTAINED

This Section gives some aid in interpreting the outputs to the examples posed in Section 4.

All printed output has the following general layout:

Page 1: Program Title

Page(s) 2: This page contains the run number of the particular problem. There will be NRUN such numbers.

Following this any comments inserted at the beginning of the problem data are printed. The method
employed by this particular problem is then stated.

Page(s) 3: This page contains details of data input and the problem solution. As the volume and type of this

part of the output depends on the print control variable MOREPR, we will restrict our discussion to
the examples presented in this guide. This discussion follows in Sections 5.1 to 55.

If MOREPR # O, page 3 is repeated, and pages 2-3 are repeated NRUN times.
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TABLE 5

Parametric linear programming: example data input




e
ke PLP  ILLUSTRATION

(2224

PARAMETRIC LoP,

NUMBER OF PARAMETRIC REQUESTS 5 PRINT VARIABLE 0
8 1 50,000 200,000
[ 2 95,000 150,000
¢ 1 «14000 1,000
c 2 1,000 5,000
¢ 3 104000 20,000

THE VALUE 1000000,000 WILL REPRESENT PLUS INFINITY AND THE VALUE »1000000,000 WILL REPRESENT MINUS INFINITY,
MOREPR = 25
IRMAX ® 100
ITRMAX = 50

M (NO, OF CONSTRAINTS) = 2, N (NO, OF VARIABLESe=REAL, NOT SLACK) @ 3,
NUMBER OF UPPER BOUNDED VARIABLES = Te
OBJECTIVE 32,04544100
Jo o o 1 2 3
BOUND VECTORs » 4 o
=1,0000 «1,0000 2,0000
X VECTORe o o o
3,8636 2,7273 240000
S Y VECTOR -] BwAX
- - (SLACK)
( )
1 0,0364 ¢ 12.0000 5,0000 30,0000 ) LE 120400 0,0000
( )
2 0,2818 ¢ 2.,0000 10,0000 30,0000 ) LE 95,00 0,0000
( )

o

VECYORs v o
1.0000 3,0000 10,0000

YVARCs o 0 @
~0.,0000 =0,0000 w0,4546
1SEFF
2 1
INBASE
2 1 e

4 SIMPLEX ITERATIONS,

OPTIMUM

TABLE 10



22

PARAMETRIC VARIATION ON THE OBYECTIVE FUNCTION ELEMENT OF VARIABLE 1

INITIAL BASIS OPTIMAL BETWEE! 0,600 AND 1,333
OBJECTIVE 32,045 VALUE OF OBJECTIVE FUNCTION ELEMENT 1.000
VALUE OF DUAL VARIABLES
0,0366 0,2818
VALUE OF Y'Aw( ELEMENTS
0,0000 «0,0000 00,4546
0OJECT]IVE 32,045 VALUE OF OBJECTIVE FUNCTION ELEMENT 1,000
VALUE OF DUAL VARIABLES
0,0364 0,2818
VALUE QF Y'AmC ELEMENTS
0,0000 =0,0000 =0.4546
INITIAL BASIS OPTIMAL BETWEEXN 0,600 AND 1,333
BASIS OPTIMAL BETWEEN =1000000,000 AND 0,600
VARIABLE 1 1S NON BASIC
OBJECTIVE 30,500 VALUE OF OBJECTIVE FUNCTION ELEMENT 0,600
VALUE OF DUAL VARJABLES
0,0000 90,3000
VALUE OF Y'Ae{ ELEMENTS
0,0000 0,0000 «1,0000
END OF PARAMETRIC VARIATION OF VARJABLE 1
PARAMETRIC VARIATION ON THE OBJECTIVE FUNCTION ELEMENT OF VARIABLE 2
INITIAL BASIS OPTIMAL BETWEEN 0,417 AKND 3,167
OBJECTIVE 32,045 VALUE OF OBJECTYIVE FUNCTION ELEMENT 3,000
VALUE OF DUAL VARIABLES
0,0364 0,2818
VALUE OF Y'AwC ELEMENTS
0,0000 »~0,0000 =0,4546
BASIS OPTIMAL BETWEEN 341467 AND 5,000
OBJECT]IVE 32,500 VALUE OF OBJECTIVE FUNCTION ELEMENT 3,167
VALUE OF DUAL VARIABLES
0,0333 0,3000
VALUE OF Y'AwC ELEMENTS
0,0000 0,0000 20,0000
OBJECTIVE 474500 VALUE OF OBJECTIVE FUNCTION ELEMENT 5,000
VALUE OF DUAL VARIABLES
0,0000 0,5000
VALUE OF Y'Ael ELEMENTS
0,0000 0,0000 5,0000
INITIAL BASIS OPTIMAL BETWEEI 0,417 AND 3,167
QBJECTIVE 264591 VALUE OF OBJECTIVE FUNCTION ELEMENT 1,000
VALUE OF DUAL VARIABLES
0,0727 0,0636
YALUE OF Y'AwC ELEMENTS
0,0000 »0,0000 =5,9091
END OF PARAMETRIC VARIATION OF VARIABLE 2
PARAMETRIC VARIATION ON THE OBJECTIVE FUNCTION ELEMENT OF VARIABLE 3
INITIAL BASIS OPTIMAL BETWEEN 9,545 AND 1000000,000
OBJECTIVE 32,045 VALUE OF OBJECTIVE FUNCTION ELEMENY 10,000
VALUE OF DUAL VARIABLES
0364 0,2818
VALUE OF Y'Aw( ELEMENTS
«0,0000 «0,0000 ~0,4546
END OF PARAMETRIC VARIATION OF VARJABLE 3

TABLE 10 (continued)



PARAMETRIC VARIATION ON THE RIGHT HAND SIDE OF CONSTRAINT 1

INJTIAL BASIS FEASIBLE BETWEEN 77,;00 AND 270,000

0BJECTIVE 32,0645 VALUE OF RIGHT HAND SIpE 120,000
VALUE OF REAL VARIABLES
18636 2,7273 2,0000
VALUE OF SLACK VARIABLES
0,0000 0,0000

OBJECTIVE 34,955 VALUE OF RIGHT HAND SIDE 200,000
VALUE OF REAL VARIABLES

11,1364 1.2727 2,0000
VALUE OF SLACK VARIABLES

0,0000 0,0000

INITIAL BASIS FEASIBLE BETWEEN 77,500 AND 270,000

BAS]S FEASIBLE BETWEEN 47,500 AND 77,500

OBJECTIVE 30,500 VALUE OF RIGHT HAND SIpE 77,500
VALUE OF REAL VARJABLES
0,0000 3,5000 240000
VALUE OF SLACK VARIABLES
0,0000 0,0000

0BJECTIVE 28,667 VALUE OF RIGHT HAND SIDE 50,000
VALUE OF REAL VARIABLES
0 9,000

0,000 N 041667
VALUE OF SLACK VARIABLES

0,0000 0,0000
END OF PARAMETRIC VARIATION OF CONSTRAINT 1
PARAMETRIC VARTATION ON THE RIGHT HAND SIDE OF CONSTRAINT 2
INITIAL BASIS FEASIBLE BETWEEN 70,000 AND 180,000
OBJECTIVE 32,045 VALUE OF RIGHT HAND SIDE 95,000
VALUE OF REAL VARIABLES

3,8636 2,7273 2,0000
VALUE OP SLACK VARIADLES

0,0000 0,0000
OBJECTIVE 474565 VALUE OF RIGHT HAND SIDE 150,000
VALUE OF REAL VARIABLES

143636 8,7273 2,0000
VALUE OF SLACK VARIABLES

0,0000 0,0000
INITIAL BASIS FEASIBLE BETWEEN 70,000 AND 180,000
OBJECTIVE 32,045 VALUE OF RIGHY HAND SIpE 95,000
VALUE OF REAL VARIABLES

3,8636 2,7273 2,0000
VALUE OF SLACK VARIABLES

0,0000 0,0000
END OF PARAMETRIC VYARIATION OF CONSTRAINT 2

TABLE 10 {continued)
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5.1 Linear Programming — Page 3 of the output produced by LINP

Problem formulation and data input are described in Section 4.1
The output is shown in Table 6.
Data Input formats are specified in Appendix 1, Block B.

As MOREPR = 1, there is a fair amount of solution and data printing (see Appendix 1, Block B). The value
of MOREPR is printed together with the maximum allowable number of reinversions (IRMAX) and iterations
(ITRMAX). The data input is printed in toto — this is self explanatory if studied in conjunction with Table 1.
The actual solution to the problem then follows.

The figure against ‘OBJECTIVE' is the current (i.e., optimal in this case) value of the objective function ¢ 'x.
As the number of variables, N, is less than 8 in the example the problem is set out in pictorial form (an example where
N > 8 is used in para. 5.3). A bound vector value of —1 indicates that this variable element has no individual upper
bound (see Appendix 4). The box contains the A matrix, and the objective function coefficients are pointed directly
underneath, while the RHS values appear to the right with the type of constraint — LE (<) in this case.

The primal values at the optimum (i.e., the current values) are printed in the row following ‘X VECTOR’,
while the dual values are printed column-wise under ‘Y VECTOR’. The ‘B-AX’ column contains the values of the -
slack variables of each row.

As MOREPR = 1 in the example, the page following the main solution contains a print of the reduced inverse
matrix along with other variables which may be of help in the event of a feasible or optimal solution not being found.
A description of the role played by each of these variables may be found in Appendix 4.

5.2 Integer Programming — Page 3 of the output produced by MIF

Problem formulation and data input are described in Section 4.2. Data Input formats are specified in
Appendix 1, Block C. Solution output is shown in Table 7.

The output is similar to that for LINP (5.1) except that all solution values are generally integer. As MOREPR =
in the example, the inverse print, etc., has been suppressed.

The user should be warned that due to the tolerance levels used here for MPCODE and the use of single precision
variables in the program, some solution values of integer variables may not be exactly integer. For example. 2.0QQ1
may appear instead of 2; this should cause no concern.

5.3 Quadratic Programming — Page(s) 3 of the output produced by QP

Problem formulation and data input are described in Section 4.3
Data input formats are specified in Appendix 1, Block D.
Solution output is shown in Table 8.

As for LINP (Section 5.1), data input is printed out before the program starts to optimise. The subsequent
output from the QP example differs from that of the other examples as N, the number of variables, is greater
than 7. On all occasions, and in all options, when N 2> 8 the solution cannot be output in picture form due to the
limitation of the page width, and an abbreviated form of the solution is printed instead.

The non-zero elements of the A-matrix are printed in row-vector form. Each element is numbered (above each
element) and these numbers are used to indicate the starting point of each successive row. This information follows
the A-matrix print. Thus, in our example, the first row starts at element number 1, the second at element 4, and so
on. Beneath each element is printed the variable associated with that element.
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The objective function value follows.

The C, X and (Y’ A — C) vectors are then printed row-by-row with each element under its respective variable
number, J. For QP the C vector contains the partial derivatives of the quadratic function. The X vector holds the
current values of the variables, as indeed it does for all MPCODE printouts.

Finally in the example (as MOREPR = ), the inverse print, etc., is suppressed) the B vector and sign, the Y
vector and the (B — AX) vector are printed row-wise, each element under its respective row number, I. There may
be more constraints present than were originally specified, but they will then have zero dual values. The sign vector, S,
indicates the sign of the Ith constraint: @ for “equal”, 1 for “less-than-or-equal”, —1 for “greater-than-or equal”.

5.4 Discrete Programming — Page(s) 3 of the output produced by BB

Problem formulation and data input are described in Section 4.4.
Date input formats are described in Appendix 1, Block E.
Solution output is shown in Table 9.

The Branch-and-Bound algorithm uses as a starting point the continuous LP solution. The first part of the
solution output on page(s) 3 is therefore the solution as obtained from LINP (Section5.1). IPRBB = 1 in the
example, so the solution is printed in full.

The program now proceeds with the tree search, and the rest of the output records details of each step in the
search at the level of detail specified by the chosen value of IPRBB.

As IPRBB = 1 in the example, the fixed variables and their values are printed at each integer solution found.
The first integer solution is, therefore, 310 (printed as 309.999 for the reasons stated in 5.2). This values is found
with the variables X1, X9, X3 fixed at 10, 30, 20 respectively. The variables X1 and X3 are then fixed at 40 and 20,
and x 1 is varied. This tail of the tree is not feasible and is, therefore, not a candidate for a further revision of the
X, value. All branches of the tree have now been explored, and a message is printed to this effect, together with the
current best discrete solution, which in this case is the first. The solution is, therefore, Xp = 20, Xp = 10, x3 = 30
with an objective function value of 310.

More diagnostic printing is available by setting IPRBB 2> 2 (see Appendix 1): these settings are of particular
assistance when MPCODE is being used to develop new algorithms and for full explanations of the specialised print-
outs thus obtained, and a description of the BB algorithm, see Reference 3.

As the maximum number of iterations has not been exceeded, the restart facility was not invoked by the
program.

5.5 Parametric Linear Programming — Page(s) 3 of the output produced by PLP

Problem formulation and data input are described in Section 4.5.
Data input formats are specified in Appendix 1, Block F.
Solution output is shown in Table 10.

PLP carries out a parametric analysis on the LP optimum. The first part of the solution output on page(s) 3
is, therefore, the data input and solution similar to that obtained from LINP, except that in the example MOREPR = (
so the inverse print, etc., is suppressed.

The rest of the output contains details of the parametric analysis required.

In the example quoted, the first variation required is that of the first constraint with the RHS ranged between
50 and 200. The initial basis is found to be feasible between limits of 77.5 and 270 for the RHS. At the initial basis
stage the values of the objective, the primal variables, the slack variables and (as IPRPLP = (0) the values of the dual
and function variables are printed. The value of the parameter, the RHS of constraint 1, is increased to 200 and the
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values of the solution variables are printed. The value of the parameter is decreased to 77.5 and the lower limit,
47.5, of the parameter for that basis is calculated. The solution values when the RHS of constraint 1 is 77.5 are
printed. Finally, the solution values at the lower limit, 50.0, of the specified range are printed.

The parametric variation of the right-hand-side of constraint 2 works the same way.

- The parametric analys1s of the objective function coeffecient of X1 (Cl) is approached next. The initial basis
is founid to be optional between 0.6 and 1.333, and the objectxve value of 32.045 is found when ¢ = 1. The dual
vector, (Y A — C) vector, real and slack variables are printed along with this information. As with the RHS variations
the rest of the ¢ range (—1<<cq <1) is investigated in 3 further similar steps and it is discovered that the ‘central’
value of ¢y is 1. (The initial LP solution in this case).

Parametric variations of the other two objective function elements are then done in the same manner, and as
all variations have then been completed, the process ends.

6. AVAILABILITY OF MPCODE

The version of MPCODE described in this Report includes a driver routine.and tolerance levels set to allow single
precision declarations of all variables: "this code has been run on IBM 360 and ICL Series 4 machines.” The basic
version of this code is completely specified in Land and Powell’s book?, and has been run on ICL 1900, CDC 6600
and Univac 1108 and also on an IBM 360 wtien -double precision had been declared for the variables. This manual
refers equally to both versions, although the driver routine is clearly only applicable to the IBM/ICL single precision
release.

A standard 9 track, 800 bpi, IBM compatible tape has been prepared to support the system, and its contents
are as follows in fixed length block format for records of 800 8-bit characters per block (10 card images per block)

in odd parity with an interblock gap of 1.5 cm. The code is EBCDIC.

ICL/IBM standard volume label

ICL/IBM standard header label

Tape Mark

Descriptive cards specifying the tape format, contents and references to documentation.
Tape Mark

Card images of the code precisely as published in Land and Powell’s book, Reference 3, (as for
CDC 6600 and ICL 1900).

Tape Mark
Card images of the MPCODE code precisely as supported by this TRRL Report (as for ICL 4/70 and 1BM 360/370).
Tape Mark
Data cards required to generate LINP example as in Reference 3.
Data cards required to generate MIF example as in Reference 3.
etc.
Tape Mark
Tape Mark
Arrangements can be made to copy this master tape onto tape supplied by prospective users.
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9. APPENDIX 1

DATA INPUT FORMATS

These are the input cards required for each complete run. All data should be right-adjusted within their respective
fields, and values should be integer except for the C, BOUND, B and A vectors which may take real values, and the
variable “TYPE” in PLP which requires data in character form.

« indicates a significant blank space.

Block A

Data Input required to initialise MPCODE for each complete job.

Field Format Internal Name Specification

Card 1 Cols1-5 (15) NRUN Number of runs with
different data inputs
and methods

Card(s) 2 Cols1-4 (A4) Hokokk Comment card. Anything
entered on this card is
printed on execution. Any
number of these may be used.

Card 3 Cols1-4 (A4) Keyword. The only valid

entries are:

LI NP Linear Programming

P — — Quadratic Programming
M I F Integer Programming
= (Method of Integer Forms)

B B — — Mixed Integer Programming
(Branch and Bound)

P L P o Parametric. Linear
Programming

Block A together with any one of the Blocks B — F (see below) is repeated NRUN times. Blocks B — F: Data
cards for optimisation by the method chosen in Block A.

Block B

Input cards for LINP (to be preceded by Block A).

Field Format Internal Name Specification
Card 1 Cols 1-10 (110) M Number of constraints
Cols 11-20 (110) N Number of variables
Cols 21 - 30 (110) ISBND Number of bounded
variables
ISBND= -1 : All variables have

an upper bound of 1.
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do not print the inverse
matrix in [PRINT.

and inverse matrix.

=2: Print the inverse matrix
but not the input data

=3: Do not print the inverse
matrix or input data

Maximum number of iterations

3* (M + N + (No. of bounded variables))

Maximum number of reinversions.
20 is a reasonable number to

Number of a non-zero element

Field Format Internal Name Specification
Card 1 (Contd) Cols 31 -40 (110) MOREPR = (: Print the input data,
=1: Print the input data
Cols41-50 (110), ITRMAX
=@ : will be set to
Cols 51- 60 (110) IRMAX
start with.
Card 2 Cols1-3 (13) J
of the objective function.
Cols5-10 (F6.0) c Element of the objective
function
Cols 11- 13 (13) J
Cols 71-73 (13) J
Cols 75 - 80 (F6.0) c)

Card 2 is repeated until all non-zero elements of the objective function have been specified, up to 8 per card.

Card 3 Cols1-10

If ISBND > 0, the next card is Card 4, otherwise it is Card 6.

Card 4 Cols1-3

Cols5-10

Cols 11-13

(110)

(13)

(F6.0)

(3)

9999999999

BOUND(J)

Terminates input of the
objective function elements

Number of a variable with
an associated upper-bound

Value of the upper bound
on the Jth variable.
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Field Format Internal Name Specification

Card 4 (Contd) Cols 15 - 20 (F6.0) BOUND(J)
Cols 71 - 73 (13) ]
Cols 75 - 80 (F6.0) BOUND(J)

Card 4 is repeated until all the upper bounds have been specified (up to 8 on each card). (Any not specified are
assumed to have no upper bounds.) ‘

Card 5 Cols1-10 . 9999999999 Terminates input of the
. " upper bounds. ’
Card 6 Cols1-3 ay . I Number of an element of
' " the. B (RHS) vector.
Col4 o - S{I)  Type of constraint

=(: anequality constraint
=1: a< constraint
=2: a2 constraint

Cols 5-10 (F6.0) S B() The Ith element of the
- B vector.

Cols 11-13 (13) I

Col 14 In S()

Cols 15-20 (F6.0) B(D)

Cols 71 -.73 (13) I

Col 74 (11) S(1)

Cols 75 - 80 (F6.0) B(I)

Card 6 is repeated as usual until all the elements of the B vector have been specified. Any not specified are assumed
to be less than a very large number (10® for System - 4).

Card 7 Cols1-10 9999999999 Terminates input of the
B elements.
Card 8 Cols5-10 Is) 1 Number of a row of the
A-matrix
Cols11- 13 (I3) J Number of a column of
the A-matrix.
Cols 15-20 (F6.0) A(LT) A non zero element of
the A-matrix.
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. Field _ Format Internal Name , Specification'

Card 8 (Contd) Cols 21 -23 (13) ' J
Cols 25 - 30  (F6.0) AQY)
Cols 71 - 75 (13) ]
Cols 75 - 80 (F6.0) ALY)

All the values on a card must belong to the same row, but they need not be in correct column}order. The rows
must, however, be in correct row order. 7 values may be specified on each card, and Card 8 is repeated till all
non-zero entries in the A-matrix have been specified; any values not specified here are assumed to be zero.

Card 9 Cols1-10 ' 9999999999 Terminates input of the
A-matrix elements.

Card 10 Col 10 (110) MORE =(: more problems are
to be specified for optimi-
sation by LINP*; Block A

need, therefore, not be
repeated unless there is
another problem by a
different method.

=(: No more problems for
this method (unless block
A is repeated).

Block C

Data Input for MIF (to be preceded by Block A).

As in Block B except that if ITRMAX is read in as @, it will be set to 3*N*(M + N + (No. of upper bound variables)),
and “LINP” (¥*) in the description of Card 10 should read instead “M I F — ”. Also the B(I) coeffecients on Card 6 and
the A(I,J) coeffecients on Card 8 must have integer values.

Block D

Data Input for QP (to be preceded by Block A).

Card 1 Cols1-10 (110) M Number of constraints
Cols 11-20 (110) N Number of variables
Cols 21 -30 (110) NUMQ Number of quadratic
variables
Card 2 Cols1-5 as) ID The variable associated
with a row of the D matrix.
Cols6-10 (Is) D The variable associated
with the column of the
D matrix.

31



D(ID,ID) have the same value

to specify both coefficients.

Field Format Internal Name Specification
Card 2 (contd) Cols11-20 (F10.0) D(ID,JD) A non-zero value of the

(ID,JD) element of D. By
symmetry D(ID,JD) and
and hence it is unnecessary

Cols 21-25 I1s) ID

Cols 26 - 30 (I5) JD

Cols 31-40 (F10.0) D(D,JD)

Cols 71 - 80 (F10.0) D(ID,JD)

Card 2 is repeated until all the non-zero elements of D have been specified.

Card 3 Cols1-10

9999999999

Terminates input of the
elements of D.

Cards 4 to 13 are as for Cards 1 to 10 of Block B, with suitable adjustments in the interpretation of Card 10 in
Block B. The vector p of the quadratic function takes the place of ¢ in the LINP input.

Block E

Input to BB (to be preceded by Block A).

Card 1 Cols1-10

Cols 11-20

Cols 21-30

Cols31-40

Cols41-50

32

(110)
(110)

(110)

(110)

(110)

NUMD

INTOBJ

IPRBB

Vv

Number of constraints.
Total number of variables

Number of discrete variables
=—1 : all the variables have
a stepsize of 1.

=1 : if the value of the objective
function at the optimal integer
solution will be an integer.

=@: otherwise

=@ : At an integer solution the

values of the real and slack
variables will be printed
irrespective of the value of
IPRBB

1 : IPRINT is called at the
initial LP optimum. A message
with the number of iterations
is printed at all tails.



Field

Format Internal Name Specification

Card 1 (Contd)

Cols 51-60

Cols 61-70

Cols 71 - 80

Cols 41 - 50 (Contd) = 1 : The fixed variables and
their values are also printed
at an integer solution.

2 2 : 'The values and function
estimates right and left of
the tree are also printed at
an integer solution.

= 3 : The estimates of the rate
of fall of the function to the
left and right are printed at

a tail.

(110) ITRBBM Maximum number of itera-
tions (for BB). If @, it is set
to N*ITRMAX

(110) IRBBM Maximum number of rein-

versions for BB.

@: the current run is started
from scratch.

(110) IREST

1 : the calculation is to be

If NUMD = 0 or —1 the next card is Card 4, otherwise Card 2.

Card 2 Cols1-3

Cols 5 - 10

Cols11-13

Cols 15 - 20

Cols 71 - 73
Cols 75 - 80

Card 3 Cols1-10

restarted.

13) J Number of a discrete variable

(16) IDISC()) Step size of the Jth discrete
variable.

a3) J

{16) IDISC())

(13) J

(16) JDISCQ)

9999999999 Terminates input of the

step sizes.

Cards 4 - 13 are as Block B cards 1 - 10.
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Field Format Internal Name

Specification

Block F
Data Input to PLP (to be preceded by Block A)

Card 1 Cols 1-- 10 (110) NUMP

~Cols11-20 (110) IPRPLP

Card 2 has 3 forms:

i) * to parametrise an objéctive or RHS element between specified limits.

" Col 1 (A1) TYPE
Cols2-10 (19) - Torl
Cols 11-20 (F10.0) TLOW
Cols 21 - 30 (F10.0) THIGH

ii)  to perform a sensitivity analysis on a RHS or an objective function element.

Col 1 (Al) TYPE
Cols2-10 (19) Tor]
Cols 11-20 (F10.0) B(I) or C(J)
Cols 21-30 (F10.0) B(I) or C(J)

34

Number of parametric
variations.

®: the dual and function
row variables are printed
when parametrising oL the
original and slack variables

are printed when parametrising

b;.

1 : the dual, function row

basic and slack variables

_are printed when parametrising

either b; or G-

Character B, if an element
of the RHS is to be varied,
or C if an element of the
objective function is to be
varied.

Number of row, I, whose RHS
element is to be varied, or
column, J, whose objective
function element is to be
varied.

Lower bound of the variation.

Upper bound of the variation.

B or C as above.
As above.

The value of the element
in the original LP



Field Format Internal Name Specification

(iii) to perform a range analysis on all objective function a.or RHS elements.
Col 1 (A1) TYPE B or C as above.
Cols 11-20 (110) Torl = —1 all the RHS and objec-

tive function elements
are to be analysed.

Card 2 is repeated NUMP times. The three types of Card 2 may be in any order.

Cards 3 to 13 are as Cards 1 to 10 of Block B.

35



10. APPENDIX 2

CORE AND TIME REQUIREMENTS FOR ICL SYSTEM - 4

The amount of core space available naturally limits the size of problem which MPCODE can handle. All testson
the TRRL System 4/70 machine have, therefore, been based on a program which will handle problems with up
to 25 constraints and 50 variables. The MPCODE overlay at TRRL has been designed to satisfy: minimum core
requirements and disc space.

MPCODE with a 25 x 50 matrix and the above-mentioned overlay needs 88k bytes of store buffer space.

The program occupies 52 tracks of disc space.

The following table gives indications of run time (in etu’s) which may be expected (1 etu = 3% secs).

Option | Rows | Variables | Bounds \I,)ai :gl:;:s 32:;?1?: P;LZT;;?: Iterations | Time (etu’s)
LINP 2 3 1 - - - 4 1
BB 2 3 1 3 - - 19 1
MIF 2 3 1 - - - 53 3
MIF 2 3 1 - - - 27 2
QP 16 18 - - 6 - 13 1
PLP 2 3 1 - — 5 4 1
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11. APPENDIX 3
JOB CONTROL

11.1 Job control for the ICL System — 4 Multijob Operating System

Input is from Unit 05, unless the BB restart facility is being used, so the initial data must be set up in a line
file with identifier of the form USRNAM: GRPNAM. DSETOS (Snnn Q) where USRNAM is the user’s username.
GRPNAM is a groupname and nnn is an integer between 0 and 999. Printer output is to DSET06. If the BB restart
facility is utilised, then output will also be to disc, tape or card punch on Unit 07, and input subsequently from the
same device on Unit 08. The job description presented here assumes that DSET07 and DSETOS8 are disc files (the

most efficient configuration).

/! LOGIN ., USRNAM, -
// . GROUP ., GRPNAM
/| .— SCHEDULE ,_, MPCODE,t, nnn/00

//., CONFG _, STORE = z, RSP = rsp
/. FILE ., DSETO07, RA, FILNMI, TK, VOLIvn (@
/l,, FILE s DSETO08, RA, FILNM2, (zqqq®), VOLIvn (b)
/l EXEC ., DSET06
// . LOGOUT
Notes: I.  tis the time in etu’s allowed for the job, and z is the store allocated. r is the rank, s the stream and

p the priority of the job.

IL ks the number of tracks allocated to this file and lvn is the volume number of the disc where these
files will be found (using the BB restart facility).

HI. FILNMI1, FILNM2 are the names of these files where the BB restart facility is being used. qqq is the
run number of the (BB) job which created the previous output file.

IV. If the BB option is not being used, or if the user is sure the BB restart facility will not be employed
by the program, parameters (a) and (b) may be omitted and notes II and III ignored.

V.  Astandard job description could use 180 units of store and 10 tracks of disc space.
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12. APPENDIX 4

LIST OF VARIABLES WHICH MAY OCCUR IN OUTPUT AND INPUT AND A LIST OF

B(D)
BOUND (J)
cq)
D(ID,JD)

DRIVER

INBASE(J))

INREV

INTOBJ

IPRBB
IPRBBM

IPRPLP
IR
IREST
IRMAX
ISBND

ISEFF(I)

ISTATE

ITR
ITRBBM
ITRMAX
IDISC()
M
MARKI
MARKK
MAXA
MAXN
38

TOLERANCES

(For more detailed explanations, see: Reference 3)

The right-hand side, b , vector.
The vector of upper bounds for each variable. If no bound is present, BOUND(J) = —1.Q)
The objective, ¢ , vector

The matrix D, of the function p'x + %x'Dx.
Only rows and columns which have at least one non-zero entry need be stored.

Used when seeking a new variable to reduce the infeasibility of the NEGINV row; it shows
whether the value of the variable in that row is to be driven up (DRIVER = 1.Q) or down
(DRIVER = -1.00)

A vector of elements indicating whether the Jth variable is basic or not. If it is basic, INBASE(J)
contains the element K showing which row of the inverse matrix and which element of XR(K)

is associated with the Jth variable. If it is non basic at its lower bound of zero, INBASE(J) = 0,
and if it is non basic at its upper bound, INBASE(J) = —1.

An indicator as to whether to set up the slack variables from b — Ax (INREV = 1) or to alter the
slacks by subtracting a multiple of the slack changes made at each base change (INREV = Q).

See Appendix 1, Block E.
See Appendix 1, Block E.

See Appendix 1, Block F.

The current number of reinversions performed.

See Appendix 1, Block E.

The maximum allowable number of LP reinversions

The number of upper-bound variables. If ISBND = —1, all variables have an upper bound
of 1

A vector of elements indicating whether the Ith constraint is effective and explicitly represented
in the inverse (in which case it shows the associated column of the inverse) or not (in which
case ISEFF(I) = Q).

This variable contains information about the conditions on entering and leaving LINP and QP.
For full details see Reference 3.

The current number of LP iterations performed.

See Appendix 1, Block E.

The maximum allowable number of LP iterations.

Step size of the Jth discrete variable in BB

Number of rows of the basic problem.

Marks the constraint represented explicitly by a slack variable in the basis.

Marks the row of the inverse matrix containing the slack variable indicated by MARKI.
Maximum number of elements allowed in the A matrix.

Maximum number of variables which may be submitted to the program.



MAXM
MORE
MOREPR
MXSIZE
N
NEGINV
NEGROW
NEWY
NEWX
NUMP
NUMQ
NUMSLK
R

S()

SIZE

TYPE
“FLOW
THIGH

XJ)

XBASIS(K)
(Printed as
XBS(K))

XKPOS

XR(K)
Y(1)
YAC()
YAMINC
YBASIS(L)

YR(L)

Tolerances

Variable

BIG
SMALL

TOL (1)

TOL (2)
TOL (3)

Maximum number of rows which may be submitted to the program.
See Reference 3 and Appendix 1.

See Appendix 1, Block B.

The maximum size of the inverse matrix.

The number of columns of the problem.

The row of the inverse associated with an infeasible variable.

The row of the constraints matrix with the greatest infeasibility.
The row of the inverse or of the A matrix which limits the size of the current basis change.
The new variable to be introduced into the basis.

The number of parametric requests in PLP.

The number of quadratic variables in QP.

The number of slack variables explicitly represented in the basis.
The limit of the entering variable.

The vector of inequality types of the constraints.

Current size of the inverse.
See Appendix 1, Block F.

The vector, x , of the variables of the primal problem.

The labels of the rows of the inverse matrix containing the current basic variables. An
explicit basic slack variable on the Ith row is shown by N + 1 in XBASIS(K).

Shows whether the new variable entering the basis is entering positively (XKPOS = 1.9) or
negatively (XKPOS = —1.0).

The values of the variables listed in XBASIS(K)

Vector of the dual variables.

(= y'A-¢’) The updated objective row of the LP calculation.

(= y'a <) The element in the updated row of the entering variable (NEWX).

The column labels of the inverse matrix, containing the numbers of the (currently) active
constraints.

The values of the dual variables of the constraints in YBASIS(L).

with the values which have been set for the ICL4/70 single precision version.

Value

108 This variable is large, and treated as a representation of ‘infinity’.

1077 A small value, sufficiently small so that a variable with a value less than it may
be treated as zero without introducing any error.

1073 Tests the feasibility of the basic primal variables at their upper and lower
bounds.

1073 Tests the feasibility of the slacks on the ineffective constraints.

103 Tests the optimality of the dual variables of the effective constraints.
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Variable

TOL (4)
TOL (5)
TOL (6)
TOL (7)
TOL (8)

There are two tolerances in MIF:-

TOLIF1
TOLIF2

40

Value

1073
107
1073
103
10°%

1072
10!

Tests the optimality of the objective row values of the non-basic variables

Tests whether a pivot should be regarded as zero.

Tests with relative error of the primal variables of a solution on the Ith constraint.
Tests the relative error of the dual variables of a solution at the Jth variable.

Tests the size of a proposed pivot during a reinversion of the inverse (connected
with TOL (5)).

Tests whether a variable has an integer value or not.

Used as a criterion to decide whether the coefficients of a new constraint are
accurate or not.
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ABSTRACT

MPCODE: A versatile linear and quadratic mathematical programming system: A H LAND
S POWELL N J PAULLEY and M R WIGAN: Department of the Environment, TRRL Supplementary
Report SR17UC, Crowthorne, 1974 (Transport & Road Research Laboratory). An extensive Mathem-
atical Programming System has been written by A Land and S Powell undet SRC funding on CDC 6600
and ICL 1900 computers. TRRL have collaborated with L.S.E. and S.R.C. Atlas Computer Laboratory to
develop and test a version of this system in parallel for ICL System 4 and IBM 360 computers. A high
degree of problem-solving robustness and reliability has been achieved. Tolerance levels were determined
that allow a substantial reduction in core storage required. Examples of linear, parametric, interger, dis-
crete and constrained quadratic formulations are given, and the document forms a Users Manual for this
system for both System 4 and IBM 360/370 computers.
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