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ABSTRACT 
 

The Opus project is developing a methodology for the coherent and consistent integration of 

information from multiple sources about complex systems, based on Bayesian statistical models. 

The primary application is in transport. The development of the modelling framework is 

described elsewhere. Alongside the modelling framework the project has developed a framework 

for storing a complete audit trail, covering the specification and fitting of the statistical model, in 

the form of meta-data. This builds on ideas about meta-data for processes that have been 

developed in other statistical projects. 

Practitioners are often sceptical about results derived from models, though in practice all 

analysis of survey or sample data involves some form of model, even if it is hidden in implicit 

assumptions. Our approach to this scepticism is to open up the model to scrutiny and to present 

information about the reliability of results, under the title ‘Provenance and Reliability’. All this 

comes from the meta-data about the statistical model. While the approach is generic, the 

presentation needs to be domain-specific and tailored to the level of expertise and understanding 

of the user of the results. 

In this paper we present the motivation behind this approach and describe the meta-data 

structures and functionality being built to deliver this support to users of results from the Opus 

methodology. 
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1 INTRODUCTION 

1.1 The Opus project 

Opus is a large information management research project, supported by Eurostat as part of the 

European Commission’s Information Society Technologies (IST) Programme. The overall aim 

of the Opus project is to enable the coherent combination and use of data from disparate, cross-

sectoral sources, and so contribute to improved decision making. The research is focused on 

developing an innovative, generic methodology, incorporating statistical and database systems. 

Transport planning is a prominent example of a topic that uses multiple sources of data, and is 

the main test case for Opus. 

To meet the needs for comprehensive information on socio-economic systems such as 

urban and regional transport planning, and in the health services sector, data from diverse 

sources (e.g. conventional sample surveys, census records, operational data streams and data 

generated by IST systems themselves) must be combined. There is currently no appropriate 

developed methodology that enables the combination of complex spatial, temporal and real time 

data in a statistically coherent fashion. The aim of the project is to develop, apply and evaluate 

such a methodology. Opus is developing a general statistical framework for combining diverse 

data sources and has specialised this framework to estimate indicators of mobility such as travel 

patterns over space and time for different groups of people. The project has pilot and feasibility 

study applications in London, Zurich, Milan, and on a national level in Belgium.  

The benefits of Opus should include: 

• Improved estimation of detailed travel demand, using all available information; 

• Avoidance of simplified combination of data that can give erroneous estimates; 

• Indicators of data quality, to provide guidance for new data collection; 

• A framework for managing data from rolling survey programmes; 

• Better understanding of the role of variability and uncertainty in results and models; 

• Avoidance of confusion from different, apparently conflicting, estimates of the same 

quantity; 

• A generalised methodology for other domains of interest. 

The project will present its final results around Easter 2006. Further details can be found on the 

project web site – www.opus-project.org. 

1.2 Modelling with Opus 

The Opus methodology is based on statistical modelling, using Bayesian methods to integrate 

information from multiple sources. In transport (for example) we have specific needs to integrate 

multiple, partial datasets, but similar problems arise in many domains. Applications always 

require domain knowledge, and these require specialised models, approaches and assumptions. 

The project is about the methodology, not the applications, but we treat specific applications as 

case or feasibility studies in which we explore the problems that arise when the generic 

methodology is applied. As mentioned, for the project the main test cases are in the Transport 

domain, with additional feasibility studies in Health. 

Opus approaches data integration through the use of statistical models of the domain and 

problem of interest. The formulation of such models is clearly specific to the application domain 

and the particular objectives of an analysis. Where multiple, disparate data sources contain 

information about the domain we use Bayesian methods to combine information about the model 

extracted from the data sources. Users of results based on statistical models should ask questions 

about the form and quality of the models used, so we have developed a meta-data-based 

approach that records the structure of the model and the fitting processes used (as a type of audit 

trail), together with functionality to present this information to users of the results. 
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This paper concentrates on the meta-data component of the Opus project, but starts with 

an outline of the modelling issues, in order to provide context. 

1.3 Models in the Opus Methodology 

1.3.1 Model Structure 

The heart of a model in Opus is a specification in mathematical terms (i.e. largely algebra) of the 

factors that influence traffic flows (or some other system being studied) and the way in which 

they interact in their influence. Of course, the particular factors and form of relationships are 

specific to the problem we are addressing.  

All the factors will have statistical distributions associated with them (i.e. they are not 

necessarily assumed to be fixed), and all the distributions and relationships will have parameters.  

All the parameters have prior distributions (representing prior knowledge or uncertainty), 

which will be more or less informative depending on what experience we can bring to the 

context and the understanding of the model.  

1.3.2 Bayesian Approach 

In simple statistical analysis we represent the uncertainty associated with an estimate of a 

parameter by calculating a confidence interval. For different levels of confidence we obtain 

different intervals (or limits) and we can represent the set of all limits as a distribution over the 

possible parameter values. In many cases this will take the shape of a Normal distribution, 

because the Normal distribution is assumed for the data. 

Although we can represent our uncertainty about a parameter as a distribution, this does 

not mean that the parameter is a random variable. Rather, it is a fixed property of the reality 

about which we have collected data, and it is our uncertainty that is represented by the 

distribution. 

We can take the idea further, and represent any uncertainty with a distribution. Thus we 

do not require that an uncertainty distribution is derived directly from data, we can construct it 

on any reasonable basis. Of course, it is not sensible to do this without some prior knowledge, or 

justification, to support the particular choices that we make. Where we do have knowledge about 

the parameter we tend to talk about knowledge rather them uncertainty distributions. 

With uncertainty represented in the form of distributions, we can draw on Bayesian 

Methodology for working with our models. 

As well as uncertainty about the values of parameters in the model, we may be uncertain 

about the appropriate form for the model. We can cope with this by introducing additional 

parameters to control the functional form of the model, in addition to those that relate directly to 

the underlying system. 

Very general classes of Bayesian models can be fitted using MCMC (Monte-Carlo 

Markov Chain) methods. This is the approach used in the Opus project, and details of the fitting 

methodology are presented in other papers, available from the project web site. 

1.3.3 Models and Models 

The term ‘Model’ is very widely used, and can be confusing because it implies different things 

to different people. Formally, a model is some abstraction (often in mathematical form) 

representing part of the behaviour of some real-world system, selected in a particular context for 

a particular purpose. An often quoted remark, attributed to the statistician Prof. James Durbin, is 

that all models are wrong, but some models are useful. 

Models are designed to meet a particular need in a particular context. Thus the forms and 

roles of models can be very varied. Some examples may help to show some of the range. 

Conceptual Models are an attempt to form a frame of reference for some domain or 

collection of constructs or concepts. Where concerned with terminology or names (and so 

sometimes called Ontological Models) they are often similar to classification structures. Other 
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conceptual models may be concerned with suitable structures for organising ways of thinking 

about a domain. 

The Relational Database Model is a formal specification of the structures and behaviour 

for databases formed from sets of rectangular tables. This provides a conceptual framework for 

thinking about databases (one that is widely used) but is also sufficiently detailed and precise to 

be the basis for the implementation of many database software systems. 

The Object Oriented Model is an alternative (more general) way of thinking about 

databases and program structures (an alternative paradigm), built using a different set of 

primitive constructs, assumptions and conventions. 

Structural Models concentrate on the objects and attributes that are used to represent 

information structures. This is necessary for the exchange of information between computer 

systems, but needs to be accompanied by clear specifications of the intended purpose and use of 

the various elements. Inconsistent interpretation by independent users or implementers working 

with such a structure is a continuing concern, unless some enforcement mechanism can be 

specified and implemented. Structural models can be conceptual, in that they provide a way of 

thinking about the appropriate structures for some context, or they can be physical, and so 

present the actual structures needed for some particular system. In contrast, Process Models (of 

which Data Flow Modelling is an example) are concerned with the operations that are performed 

on data objects as they are moved between structures or in response to events. Structural and 

Process (and related) models for software are often represented using the Unified Modelling 

Language – UML (see [UML]). 

Statistical Models are generally representations of some real system that exhibits 

variability or unpredictability. They use mathematical relationships to specify the form of 

dependencies between variables, and statistical distributions to express the variability. Such 

models can be generic (when they are sometimes described as methods or methodologies), or 

specific to a particular application (when they will often be instances of the more generic model 

forms). The term Graphical Models is used to refer to a class of models that express 

dependencies between variables in the form of a graph showing conditional independence. 

Bayesian Models use a formulation of uncertainty about parameter estimates that is based on 

Bayes’ Theorem. For the Opus project we are working with statistical models of specific 

systems, constructed using the generic Bayesian approach. Some of these models are (in part) 

instances of Graphical Models. 

The term Transport Model is used to refer to a class of procedures that are used to 

estimate information about transport systems that is difficult to observe. For example, ‘Route-

Flow’ models are used to estimate the sharing of traffic flow between possible modes and routes 

when the demand between origins and destinations is known. Such models are often treated as 

deterministic, but in reality they are usually statistical models in which variability is ignored. For 

example, the use of ‘least-squares’ to estimate the relationship between variables observed with 

‘error’ is only optimal under assumptions of independence, symmetry and constant variance. 

Many such assumptions can exist within the ‘black boxes’ that are some transport models. Our 

preferred approach is to open up such models and to make their mathematical and statistical 

assumptions explicit. 

Models exist at various levels of abstraction, and confusion can arise from not 

recognising the level to which a particular construct contributes, or at which a discussion about 

the model is taking place. In the Opus methodology we explicitly separate out generalised 

models (GAPMs – Generalised A-Priori Models) which represent the general knowledge about 

the nature of relationships and influences within a domain, from the specific and detailed models 

that are used to explore out understanding or knowledge about a specific issue or system. 



Andrew Westlake & Marcus Wigan  4 

2 RESULTS FROM THE OPUS METHODOLOGY 

2.1 Why do we use models? 

Practitioners are often sceptical about results from models, preferring to rely on results derived 

directly from a particular dataset. While this attitude is understandable, it does ignore the limited 

applicability of a particular dataset (to what extent can the results be generalised) or the biases 

inherent in particular data collection methods (what do we do when different datasets give 

different results). In practice, all data analysis involves some form of statistical model, even if 

this is not made explicit. By making the model explicit we are better able to balance information 

from different sources, understand biases and so generalise to the whole system. 

How, then, do we persuade practitioners that models are valid and useful? One strand of 

the Opus project addresses this, through the use of meta-data about the statistical models and the 

model fitting processes. From a philosophical perspective we argue that there is always a model, 

so it is better to understand it and be able to criticise it than to pretend that there is no model. 

However, rather than trying to win a philosophical argument we are concentrating on exposing 

the qualities of a model so that users can make their own judgements as to the usefulness of 

model results. We focus on providing information to users about the provenance and reliability 

of results obtained from a model. 

2.2 The form of Results from Models 

The end result from application of the Opus methodology is a calibrated statistical model. This is 

specified in terms of a set of mathematical relationships among the variables and parameters of 

the model, including components that describe the stochastic variability exhibited by the 

underlying system. In addition, the knowledge about the model parameters that has been 

extracted from the evidence available in datasets is summarised in terms of posterior 

distributions which encapsulate the best estimates and our uncertainty about the parameters. 

An experienced analyst, familiar with the methodology, can use the model to extract 

information about the underlying system, covering estimates of measures of interest, their 

variability, and the uncertainty associated with these estimates. If dealing directly with the 

mathematics of the model is seen as too difficult, the implications of the model can be presented 

in the form of simulated datasets generated from the mathematical specification. A simulated 

dataset will generally include variability associated with the underlying system, and can also 

include variability arising from uncertainty about parameter values.  

2.3 Results from Opus Models 

The Opus methodology is Bayesian, so all the knowledge lies in the model specification plus the 

posterior distributions of the parameters. That is, all information about the underlying real-world 

system that is contained in observed datasets and is pertinent to the model formulation has 

already been extracted by the model fitting process into the posterior distributions. In theory it is 

then sufficient to present just this extracted information (the model formulation together with the 

posterior distributions) to users. In practice, this will be too complex or impenetrable for most 

users, so, as with most statistical analyses, other forms of interpretation and presentation will be 

needed. 

Notice that we assume that the mathematical formulation of the model has been 

determined, and the methodology has been applied to give us the best possible calibration of this 

model, extracting all possible information from the data sources. Clearly there is a previous 

process by which the mathematical form of the model is developed and decided upon. This may 

well use the same methodology as part of an intermediate step (and other methodologies and 

previous knowledge), but results are always derived from the final version of the model 

formulation, calibrated in the best possible way. 
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The central role of the model is valuable because it allow us to generalise, from actual 

data to all situations covered by the model. All information that we present will be valid 

information about the model, but will only provide useful insights about the underlying system if 

the model has a valid (and sensible) structure and is well-determined by the available data. Thus 

a user of information from the model should reasonably ask about the form of the model, the 

processes by which it was fitted, and the extent to which conclusions are well-determined. 

2.4 Provenance and Reliability of Results from Models  

We anticipate the presentation of three forms of information derived from a model. 

1. Conclusions. Summary reports which provide interpretations of the fitted model, based 

on the experience and judgement of the author. These will be largely textual, but will 

include illustrative material and links back to the model. 

2. Estimates. Presentation of the posterior distributions of quantities of interest from the 

underlying system. This can be done in terms of summary statistics (particularly means 

and standard deviations) of the posterior distributions, or of complete distributions, 

presented as histograms or multivariate contour plots (for example). Note that the 

distribution represents our uncertainty about the true value of the quantity, so it is 

important to present this as well as any point (best) estimates. 

Population parameters of direct interest to users (for example, in decision making) will be the 

primary focus, but these are generally dependent on internal (hyper-) parameters, which are the 

ones directly adjusted by the fitting process. Estimates can be obtained for any derivable 

measure on the underlying system, with a corresponding derived posterior distribution. 

3. Synthetic data. Given the model specification and the posterior distributions, it is 

possible to simulate observations on data subjects. In this way, we can create synthetic 

datasets which have the same characteristics as the model. These are much easier to 

analyse for people used to handling real datasets. It is also possible to generate data for 

specific conditions, for example by limiting the impact of abnormal events, focussing on 

particular subsets of the overall possibilities, or assuming away some uncertainty in 

parameters.  

These three types of information have close parallels with information obtained by more 

traditional methods. The difference is in the central role of the model in our methodology. 

Instead of presenting information that is directly derived from a dataset, and which is then 

inferred to be directly about the underlying system, all our information is mediated by the model. 

The model serves to balance and explain differences in the results obtained from separate 

datasets, by requiring that differences in the data collection methods or the response processes 

are made explicit. It also makes it possible to explore the implications of the model for 

combinations of circumstances for which no data has actually been observed.  

For such results from a model to be useful and usable, the user must have confidence in 

the model. We must be able to explore and ask questions about the nature and qualities of any 

fitted model. We thus propose that two additional types of information should be available with 

all results that are derived from a statistical model. 

4. Provenance. Information about the structure and objectives of the model (including its 

mathematical form), and about the model fitting process (the audit trail). This includes 

information about the fitting methodology (which will apply across a set of related 

models), together with the datasets used at the various fitting stages and the contribution of 

each such stage to the final fit. The latter is particularly important in terms of 

understanding how well the posterior distributions of parameters have been determined by 

the fitting process. 

5. Reliability. This relates to the posterior distributions of the model parameters. But instead 

of focussing on estimates of quantities of interest in the underlying system, it focuses on 

the uncertainty that remains about the model parameters. We explore whether the 
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parameters are well-determined, the source of the knowledge about a parameter (ie prior 

knowledge or particular datasets), and how well the final model reproduces the datasets 

used. It is important to distinguish between uncertainty about parameters (which should 

generally decrease as more data is used or as the model formulation is improved) and 

variability in observed data that is associated with measurement processes or unpredictable 

behaviour. 

The source of most of this information is the meta-data that describes a statistical model and that 

records (like an audit trail) the processes used to arrive at the final state of the model. Later 

sections of this paper propose a structure for meta-data about statistical models that includes 

(potentially) all this information (it is in effect a complete audit trail for all the specifications and 

stages used to produce results – such as synthetic data).  

We also need to find ways of presenting this additional information that are accessible 

and comprehensible for different groups of user. Different types of user will expect answers of 

different complexity and detail. Some answers can be generic, describing the philosophy behind 

the Opus methodology and Bayesian modelling, or showing (perhaps in UML diagrams) the 

outline of the model fitting processes used. Other answers will need to be based on the specific 

components used in the model from which the data are synthesised, and further ones will make 

use of the detailed posterior information about the parameters. The same information may need 

to be presented in different ways for different types of user.  

2.5 The Interpretation of Synthetic Data  

Because synthetic data looks like real data, no special facilities are needed to add it to existing 

data management or analysis systems, or to use it within them. However, synthetic data is 

different, and to use it effectively (and correctly) the user needs to understand this difference and 

have access to information about the form and quality of the model.  

The problem is that synthetic data is not real, and its statistical properties are not the 

same as those of real observations on the underlying system, because they come entirely from 

the fitted model. The challenge is to guide users to appreciate these differences. 

The issue of sample size illustrates the difference. There can be no information in 

synthetic data that is not already present in the calibrated model from which it was synthesized, 

and increasing the size of a synthetic sample just improves the precision of the information about 

the model, it does not provide any additional information about the real world. With real data, 

increasing the sample size increases the amount of information available about the real system 

being observed. However, with simulated data, increasing the size of the simulated sample only 

provides more information about the model, not about the real system. All available information 

about the real system has already been extracted into the model.  

3 THE ROLE OF META-DATA 

3.1 Meta-data as Audit Trail 

Over recent years the concept of meta-data and the recognition of its importance has become 

widespread in many fields, including transport. However, the general idea of meta-data has 

many different applications in different areas and so means different things to different people. 

For example, the Dublin Core proposals (and extensions such as the UK government e-GMS 

standard) have proved important in the context of resource discovery, especially on the Internet. 

Related to this is the ISO 11179 standard for meta-data repositories. Similarly, the DDI (Data 

Documentation Initiative) Codebook standard [DDI] for the description of survey datasets has 

achieved wide acceptance, including use by some of the Opus project partners. Several examples 

of this approach to travel survey data are discussed by Levinson and Zofka [LeZo04]. 

An alternative thread that has received attention in the statistical domain is that of 

process meta-data. This is information that describes and documents the processes through 
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which data has passed. This can be seen as providing an audit trail so that it becomes possible to 

discover details about any transformations, adjustments or corrections that have been made to 

data before it reaches the form in which is published. This approach to statistical meta-data is 

discussed by Green and Kent [GrKe02] in one of the deliverables from the MetaNet project 

[MetaNet].  

Also from that project, Froeschl and colleagues [FGdV03] make valuable contributions 

about the concepts underlying statistical meta-data. Amongst their insights is the useful 

distinction between what they call Intentional and Extensional meta-data. 

Intentional meta-data documents concepts, objectives, reasons and other factors that 

precede or are external to statistical data. This can include things like decisions about the sample 

design and data collection methods, the names and coding of variables, and the people, 

organisations and context associated with data. It is generally textual, and, while the structure of 

the components will have a formal organisation, the content will be less formally controlled. 

Extensional meta-data documents actions and specifications. It includes things such as 

sample selection rules, derivations and transformations, file locations, process and analysis 

specifications. It can usually be captured by software processes, and can be part of the input 

specifications for other processes. The content of such items will have a tight formal 

specification. 

3.2 Meta-data in Opus 

In the Opus project we focus on process meta-data, mostly of extensional form. Our objective is 

to keep track of the processes that are applied in developing the statistical model from which 

conclusions are drawn. 

Details about the Meta-data system adopted by the project appear in the following 

section, but the main elements are as follows: 

• the mathematical specification of the model that is chosen, including all its statistical 

components 

• the model fitting processes that are applied to the model, including all the datasets that 

are used 

• the state of knowledge about the modelled system that is extracted from the data by the 

fitting processes 

• specifications for the results that are extracted or reported from the final model 

The intention is to capture all pertinent information about the model fitting process and link this 

to any results produced from the model. With this information we open up the black box of the 

model, so that a user can explore the qualities and reasonableness of the model and the fitting 

processes, and can ask questions about the reliability of results obtained from the model. 

Because the information is formally structured, it is also possible for other software to read the 

specifications and use them to repeat the model fitting process (for validation of fitting 

algorithms), or to apply the same model to different data. 

However, while the capture of this information is essential, its mere existence is not 

sufficient. Facilities are needed to present the information in ways that are accessible to 

particular groups of user, together with guidance about the types of question that should be asked 

about the model and the results. This is the objective of the Reliability and Provenance concepts 

already presented. 
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4 THE OPUS META-DATA MODEL 

4.1 Structures for Meta-data 

In the Opus Project we use UML 

to hold specifications of the 

structures and functionality that 

we have designed for handling 

meta-data. FIGURE 1 shows 

some of the high level structures 

that are relevant for this paper. 

These are developed using the 

hyperModel Workbench 

[Carl05]. 

These components are 

described further in later 

sections, but first we look at an 

example. The full structural 

model contains much more 

detail. Documents describing the 

details are available to people 

who sign up to join the project 

discussion groups, and will be 

widely published at the end of 

the project. 

4.2 Model Instances 

Information about actual fitted models is stored in XML documents, with structure controlled by 

XML schemas generated from the UML structural model. These XML documents are then 

accessible for use in other software. We are developing a web-based display application to 

support exploration of models. 

FIGURE 2 shows (part of) a web page containing a summary of a particular model. This 

page is created by using an XML style-sheet to extract and format appropriate parts of the 

information in the underlying XML document. The layout and the headings (all italicised) are in 

the style-sheet, and everything else comes from the model information (including the 

mathematics of the derivations, expressed using MathML).  

This example takes two separate matrix estimates of OD flows and fits a common 

statistical model to them. The model is a main-effects log-linear model (with Poisson variability) 

for flow between zones, and has separate parameters for within-zone flows. 

The display shows most of the textual information available about the model, though it 

has been truncated here for reasons of space and readability. Following this, FIGURE 3 shows 

an influence diagram generated from the XML document. This shows how the various 

relationships (Stochastic, Derived and Constraints) are linked together through the model. This 

type of diagram is one of the forms of presentation included in the display application that is 

driven by the XML model specification. The underlying XML document is large, so is not 

shown here. 

 
FIGURE 1  Outline of the Opus Meta-data Structure 
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FIGURE 2  Model Summary displayed as a Web Page (incomplete) 
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FIGURE 3  Influence Diagram generated from Model Specification 

4.3 Components of the Meta-data Model 

The ModelSpecification is a (single) complex structure that contains all the information about 

the form of the statistical model that has been chosen as an appropriate abstraction of the real 

system. This includes the variables (or factors) about the underlying real system that are 

pertinent to this model, the parameters that have been chosen to summarise or represent 

influence mechanisms in the real system, the nature and forms of mathematical and statistical 

relationships between the variables and the parameters, and the statistical distributions that 

represent the variability in observations on the system. A considerable amount of structural 

knowledge and expertise goes into the construction of this specification, and the specification as 

a whole represents the set of assumptions about the real system that are embodied in the model. 

The stored meta-data is mostly of extensional form, being formal specifications that can be 

transformed for use in suitable software, but there is also intentional meta-data that describes the 

elements and documents reasons for particular model formulations or parameterisations and for 

making particular assumptions. 

The ModelState element represents knowledge about the values of parameters in the 

model, expressed as uncertainty distributions. Every time we use data to update (or improve) the 

fit of the model the knowledge changes, so in general we will have a set of states associated with 

the model. When using Bayesian model fitting methods there will usually be an initial state that 

represents the knowledge brought to the model before any data has been used for calibration. If 
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we have no prior knowledge then this will be represented by non-informative choices of 

knowledge distributions. 

The ModelFit represents the process of using one or more datasets in some well-defined 

methodology to update the knowledge about the system through the model. Such an updating 

process will start from some state of knowledge about the model (the prior state) and will 

produce a new state (the posterior state) in which the knowledge (uncertainty distributions) has 

been updated. Often the overall process of fitting a model will involve a sequence of different 

fitting steps, in which different datasets are used, perhaps with different fitting methods. Iterative 

procedures are also possible, in which the model is repeatedly updated from various datasets 

until stability is reached in the uncertainty distributions. These processes produce chains of 

model states which represent the fitting sequence.  

A fitting step may require mapping between the form of variables in the data and that in 

the model. For example, the model may be expressed in terms of the behaviour of individuals, 

but some data might only be available after aggregation. Or individual income may be 

represented as exact amounts in the model but only collected as banded groups in a survey. 

There is no problem about this, as long as it is possible to calculate the likelihood of the data that 

is implied by the model. In practice this means that any link between the model and data that 

involves variability or uncertainty needs to be represented explicitly in the model, while 

anything involving deterministic transformations or aggregation can be handled as a data 

mapping as part of the fitting step. 

We assume that individual datasets are accompanied by their own meta-data describing 

their contents and their collection processes. In the Opus tests we will be using the DDI 

Codebook [DDI] for this information. 

Where the fitting process is based on MCMC methods, the resulting information about 

the parameters (the posterior knowledge) takes the form of empirical distributions of simulated 

values. These are initially stored as multivariate datasets, retaining full information about the 

distribution and dependencies between parameters, but can also be summarised to (appropriate) 

specific distributional forms.  

ModelResults, whether conclusions, estimates or simulated data, are always based on a 

single state of the model, generally what might be characterised as the ‘final’ state after 

extracting all available information from all datasets. Generally speaking, results will be 

obtained by taking the final state of knowledge about one or more parameters and working 

through the mathematics of the model to be able to make statements about the implications of 

the model for the underlying system. 

4.4 Using Meta-data with Results from a Model 

Model results can always be linked back to a single state of the model, from which we have 

access to both the specification of the model and the chain of fitting steps that led to that state. 

Thus software that is designed to support use of results from the model has access to all the 

meta-data that documents the final state of the model and how this was reached. This is the basis 

of our efforts to provide users of model results with supporting information about the 

provenance and reliability of the results, through the meta-data. 

4.4.1 Provenance 

In this area we focus on the general form of the model specification and the precedents on which 

it is based (or from which it is derived), plus the datasets used in the fitting steps. It is important 

to retain the ability for the experienced user to drill down into technical detail, but our initial 

efforts concentrate on presenting this information at a more general level. Such information will 

usually need to be presented in a form that is specific to the domain of application and the area 

to which the model applies. Some more generic presentation may be possible, for example with 

the generic (GAPM) model diagrams to show influence paths, and with the Graphical Models 
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that are widely used by statisticians to show conditional independence. Examples of such 

presentations have been shown in FIGURE 2 and FIGURE 3. 

On the model fitting side, we can readily list the steps involved in the fitting processes 

and the datasets employed in each, together with a brief summary of the contribution of each to 

the final fit. From here the user can drill down into the meta-data supplied with each dataset. 

4.4.2 Reliability 

There are two main facets which affect the confidence that a user will have in the results 

obtained from a model.  

The first is the form of the model, where the user needs to be convinced that the model is 

a reasonable and adequate representation of the aspects of reality to which the results are to be 

applied. In part this is approached through (detailed) exploration of the model specification, as 

described in the previous section. It can also be addressed by comparing the distributions of 

measures in real datasets with the distributions that are predicted by the model for the same 

measures. 

The second facet concerns the extent to which the parameters in the model are well-

determined by the fitting processes that have been used. The (posterior) knowledge about the 

parameters is contained in the final uncertainty distributions, so examination of these reveals the 

precision of the final knowledge. The knowledge distributions are generally not independent for 

separate parameters, so multivariate displays (such as contour diagrams) are needed. The 

statistical package R provides extensive facilities for such displays, so is the target for our 

development efforts. It also has facilities for the comparison of distributions, for example in 

different demographic groups or for different origin zones. 

Through the mathematical relationships in the model it is possible to derive uncertainty 

measures for any derivable measure from the model, so this exploration is not limited to the 

underlying (hyper-) statistical parameters of the model. Because many users will not be familiar 

with statistical displays we need domain-specific ways of displaying these uncertainty 

distributions. For example, we are working on ways to represent uncertainty and variability 

within traffic network flow diagrams. 

The sequence of fitting steps provides access to a sequence of uncertainty distributions 

about any parameter or measure. By examining the way in which the distributions change during 

the fitting process we can identify where the main changes occur and so which datasets 

contribute most to the determination of particular measures.  

5 CONCLUSIONS 

The Opus project is addressing the problem of producing a coherent and consistent view of a 

complex system through the use of statistical methods to integrate information from multiple 

sources into a single statistical model. Practitioners are often sceptical about the usefulness of 

results obtained from models, so we take the initiative to open up the specifications and make 

information available about the quality of the model. 

We have designed a meta-data system which holds all pertinent information about the 

specification of the model and the processes by which data is used to fit the model. While 

experienced users may be able to use this information directly, in general we need to be 

proactive and present information about the provenance and reliability of the model together 

with actual results obtained from it.  

Development and implementation of these ideas is continuing. 
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